NHS Digital Data Release Register - reformatted

NHS Black Country and West Birmingham CCG

🚩 NHS Black Country and West Birmingham CCG received multiple files from the same dataset, in the same month, both with optouts respected and with optouts ignored. NHS Black Country and West Birmingham CCG may not have compared the two datasets, but the identifiers are consistent between datasets for the same recipient, and NHS Digital does not know what their recipients actually do.

Project 1 — DARS-NIC-435173-Z6K9J

Opt outs honoured: No - Statutory exemption to flow confidential data without consent (Statutory exemption to flow confidential data without consent)

Sensitive: Sensitive

When: 2021/03 — 2021/04.

Repeats: One-Off

Legal basis: CV19: Regulation 3 (4) of the Health Service (Control of Patient Information) Regulations 2002

Categories: Anonymised - ICO code compliant

Datasets:

  • GPES Data for Pandemic Planning and Research (COVID-19)

Objectives:

NHS Digital has been provided with the necessary powers to support the Secretary of State’s response to COVID-19 under the COVID-19 Public Health Directions 2020 (COVID-19 Directions) and support various COVID-19 purposes, the data shared under this agreement can be used for these specified purposes except where they would require the reidentification of individuals. GPES data for pandemic planning and research (GDPPR COVID 19) To support the response to the outbreak, NHS Digital has been legally directed to collect and analyse healthcare information about patients from their GP record for the duration of the COVID-19 emergency period under the COVID-19 Directions. The data which NHS Digital has collected and is providing under this agreement includes coded health data, which is held in a patient’s GP record, such as details of: • diagnoses and findings • medications and other prescribed items • investigations, tests and results • treatments and outcomes • vaccinations and immunisations Details of any sensitive SNOMED codes included in the GDPPR data set can be found in the Reference Data and GDPPR COVID 19 user guides hosted on the NHS Digital website. SNOMED codes are included in GDPPR data. There are no free text record entries in the data. The Controller will use the pseudonymised GDPPR COVID 19 data to provide intelligence to support their local response to the COVID-19 emergency. The data is analysed so that health care provision can be planned to support the needs of the population within the CCG area for the COVID-19 purposes. Such uses of the data include but are not limited to: • Analysis of missed appointments - Analysis of local missed/delayed referrals due to the COVID-19 crisis to estimate the potential impact and to estimate when ‘normal’ health and care services may resume, linked to Paragraph 2.2.3 of the COVID-19 Directions. • Patient risk stratification and predictive modelling - to highlight patients at risk of requiring hospital admission due to COVID-19, computed using algorithms executed against linked de-identified data, and identification of future service delivery models linked to Paragraph 2.2.2 of the COVID-19 Directions. As with all risk stratification, this would lead to the identification of the characteristics of a cohort that could subsequently, and separately, be used to identify individuals for intervention. However the identification of individuals will not be done as part of this data sharing agreement, and the data shared under this agreement will not be reidentified. • Resource Allocation - In order to assess system wide impact of COVID-19, the GDPPR COVID 19 data will allow reallocation of resources to the worst hit localities using their expertise in scenario planning, clinical impact and assessment of workforce needs, linked to Paragraph 2.2.4 of the COVID-19 Directions: The data may only be linked by the Data Controller or their respective Data Processor, to other pseudonymised datasets which it holds under a current data sharing agreement only where such data is provided for the purposes of general commissioning by NHS Digital. The Health Service Control of Patient Information Regulations (COPI) will also apply to any data linked to the GDPPR data. The linked data may only be used for purposes stipulated within this agreement and may only be held and used whilst both data sharing agreements are live and in date. Using the linked data for any other purposes, including non-COVID-19 purposes would be considered a breach of this agreement. Reidentification of individuals is not permitted under this DSA. LEGAL BASIS FOR PROCESSING DATA: Legal Basis for NHS Digital to Disseminate the Data: NHS Digital is able to disseminate data with the Recipients for the agreed purposes under a notice issued to NHS Digital by the Secretary of State for Health and Social Care under Regulation 3(4) of the Health Service Control of Patient Information Regulations (COPI) dated 17 March 2020 (the NHSD COPI Notice). The Recipients are health organisations covered by Regulation 3(3) of COPI and the agreed purposes (paragraphs 2.2.2-2.2.4 of the COVID-19 Directions, as stated below in section 5a) for which the disseminated data is being shared are covered by Regulation 3(1) of COPI. Under the Health and Social Care Act, NHS Digital is relying on section 261(5)(d) – necessary or expedient to share the disseminated data with the Recipients for the agreed purposes. Legal Basis for Processing: The Recipients are able to receive and process the disseminated data under a notice issued to the Recipients by the Secretary of State for Health and Social Care under Regulation 3(4) of COPI dated 20th March (the Recipient COPI Notice section 2). The Secretary of State has issued notices under the Health Service Control of Patient Information Regulations 2002 requiring the following organisations to process information: Health organisations “Health Organisations” defined below under Regulation 3(3) of COPI includes CCGs for the reasons explained below. These are clinically led statutory NHS bodies responsible for the planning and commissioning of health care services for their local area The Secretary of State for Health and Social Care has issued NHS Digital with a Notice under Regulation 3(4) of the National Health Service (Control of Patient Information Regulations) 2002 (COPI) to require NHS Digital to share confidential patient information with organisations permitted to process confidential information under Regulation 3(3) of COPI. These include: • persons employed or engaged for the purposes of the health service Under Section 26 of the Health and Social Care Act 2012, CCG’s have a duty to provide and manage health services for the population. Regulation 7 of COPI includes certain limitations. The request has considered these limitations, considering data minimisation, access controls and technical and organisational measures. Under GDPR, the Recipients can rely on Article 6(1)(c) – Legal Obligation to receive and process the Disclosed Data from NHS Digital for the Agreed Purposes under the Recipient COPI Notice. As this is health information and therefore special category personal data the Recipients can also rely on Article 9(2)(h) – preventative or occupational medicine and para 6 of Schedule 1 DPA – statutory purpose.

Expected Benefits:

• Manage demand and capacity • Reallocation of resources • Bring in additional workforce support • Assists commissioners to make better decisions to support patients • Identifying COVID-19 trends and risks to public health • Enables CCGs to provide guidance and develop policies to respond to the outbreak • Controlling and helping to prevent the spread of the virus

Outputs:

• Operational planning to predict likely demand on primary, community and acute service for vulnerable patients due to the impact of COVID-19 • Analysis of resource allocation • Investigating and monitoring the effects of COVID-19 • Patient Stratification in relation to COVID-19, such as: o Patients at highest risk of admission o Frail and elderly o Patients that are currently in hospital o Patients with prescriptions related to COVID-19 o Patients recently Discharged from hospital For avoidance of doubt these are pseudonymised patient cohorts, not identifiable.

Processing:

PROCESSING CONDITIONS: Data must only be used for the purposes stipulated within this Data Sharing Agreement. Any additional disclosure / publication will require further approval from NHS Digital. Data Processors must only act upon specific instructions from the Data Controller. All access to data is managed under Role-Based Access Controls. Users can only access data authorised by their role and the tasks that they are required to undertake. Patient level data will not be linked other than as specifically detailed within this Data Sharing Agreement. NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract i.e.: employees, agents and contractors of the Data Recipient who may have access to that data). The Recipients will take all required security measures to protect the disseminated data and they will not generate copies of their cuts of the disseminated data unless this is strictly necessary. Where this is necessary, the Recipients will keep a log of all copies of the disseminated data and who is controlling them and ensure these are updated and destroyed securely. Onward sharing of patient level data is not permitted under this agreement. Only aggregated reports with small number suppression can be shared externally. The data disseminated will only be used for COVID-19 GDPPR purposes as described in this DSA, any other purpose is excluded. SEGREGATION: Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked. AUDIT All access to data is auditable by NHS Digital in accordance with the Data Sharing Framework Contract and NHS Digital terms. Under the Local Audit and Accountability Act 2014, section 35, Secretary of State has power to audit all data that has flowed, including under COPI. DATA MINIMISATION: Data Minimisation in relation to the data sets listed within the application are listed below: • Patients who are normally registered and/or resident within the CCG region (including historical activity where the patient was previously registered or resident in another commissioner area). and/or • Patients treated by a provider where the CCG is the host/co-ordinating commissioner and/or has the primary responsibility for the provider services in the local health economy. and/or • Activity identified by the provider and recorded as such within national systems (such as SUS+) as for the attention of the CCG. The Data Services for Commissioners Regional Office (DSCRO) obtains the following data sets: - GDPPR COVID 19 Data Pseudonymisation is completed within the DSCRO and is then disseminated as follows: 1. Pseudonymised GDPPR COVID 19 data is securely transferred from the DSCRO to the Data Controller / Processor 2. Aggregation of required data will be completed by the Controller (or the Processor as instructed by the Controller). 3. Patient level data may not be shared by the Controller (or any of its processors).


Project 2 — DARS-NIC-422211-Q0Y4D

Opt outs honoured: No - data flow is not identifiable, Yes - patient objections upheld (Mixture of confidential data flow(s) with support under section 251 NHS Act 2006 and non-confidential data flow(s))

Sensitive: Sensitive

When: 2021/03 — 2021/04.

Repeats: One-Off

Legal basis: Health and Social Care Act 2012 - s261 - 'Other dissemination of information', National Health Service Act 2006 - s251 - 'Control of patient information'.

Categories: Anonymised - ICO code compliant, Identifiable

Datasets:

  • Acute-Local Provider Flows
  • Ambulance-Local Provider Flows
  • Children and Young People Health
  • Civil Registration - Births
  • Civil Registration - Deaths
  • Community Services Data Set
  • Community-Local Provider Flows
  • Demand for Service-Local Provider Flows
  • Diagnostic Imaging Dataset
  • Diagnostic Services-Local Provider Flows
  • Emergency Care-Local Provider Flows
  • e-Referral Service for Commissioning
  • Experience, Quality and Outcomes-Local Provider Flows
  • Improving Access to Psychological Therapies Data Set
  • Maternity Services Data Set
  • Medicines dispensed in Primary Care (NHSBSA data)
  • Mental Health and Learning Disabilities Data Set
  • Mental Health Minimum Data Set
  • Mental Health Services Data Set
  • Mental Health-Local Provider Flows
  • National Cancer Waiting Times Monitoring DataSet (CWT)
  • National Diabetes Audit
  • Other Not Elsewhere Classified (NEC)-Local Provider Flows
  • Patient Reported Outcome Measures
  • Personal Demographic Service
  • Population Data-Local Provider Flows
  • Primary Care Services-Local Provider Flows
  • Public Health and Screening Services-Local Provider Flows
  • Summary Hospital-level Mortality Indicator
  • SUS for Commissioners

Objectives:

INVOICE VALIDATION Invoice validation is part of a process by which providers of care or services get paid for the work they do. Invoices are submitted to the Clinical Commissioning Group (CCG) so the CCG is able to ensure that the activity claimed for each patient is their responsibility. This is done by processing and analysing Secondary User Services (SUS+), which is received into a secure Controlled Environment for Finance (CEfF). The SUS+ data is identifiable at the level of NHS number. The NHS number is only used to confirm the accuracy of backing-data sets (data from providers) and determining if the CCG is the responsible commissioner for the patient. The CCG are advised by the appointed CEfF whether payment for invoices can be made or not. Invoice Validation will be conducted by NHS Arden and Greater East Midlands Commissioning Support Unit and Liaison Financial Services Ltd. Liaison Financial Services Ltd conduct an independent ad-hoc review on retrospective payments made. Investing resource, skills and experience into deeper reconciliation, this identifies overcharges already paid and recovers savings for the CCG that would otherwise be lost. RISK STRATIFICATION Risk stratification is a tool for identifying and predicting which patients are at high risk (of health deterioration and using multiple services) or are likely to be at high risk and prioritising the management of their care in order to prevent worse outcomes. To conduct risk stratification, Secondary User Services (SUS+) and Mental Health Services Dataset (MHSDS) data,, identifiable at the level of NHS number is linked with Primary Care data (from GPs) and an algorithm is applied to produce risk scores. Risk Stratification provides focus for future demands by enabling commissioners to prepare plans for both individual and groups of vulnerable patients. Commissioners can then prepare plans for patients who may require high levels of care. Risk Stratification also enables General Practitioners (GPs) to better target intervention in Primary Care. Risk Stratification will be conducted by NHS Midlands and Lancashire Commissioning Support Unit and Prescribing Services Limited. COMMISSIONING To use pseudonymised data to provide intelligence to support the commissioning of health services. The data (containing both clinical and financial information) is analysed so that health care provision can be planned to support the needs of the population within the CCG area. The CCGs commission services from a range of providers covering a wide array of services. Each of the data flow categories requested supports the commissioned activity of one or more providers. The following pseudonymised datasets are required to provide intelligence to support commissioning of health services: - Secondary Uses Service (SUS+) - Local Provider Flows o Acute o Ambulance o Community o Demand for Service o Diagnostic Service o Emergency Care o Experience, Quality and Outcomes o Mental Health o Other Not Elsewhere Classified o Population Data o Primary Care Services o Public Health Screening - Mental Health Minimum Data Set (MHMDS) - Mental Health Learning Disability Data Set (MHLDDS) - Mental Health Services Data Set (MHSDS) - Maternity Services Data Set (MSDS) - Improving Access to Psychological Therapy (IAPT) - Child and Young People Health Service (CYPHS) - Community Services Data Set (CSDS) - Diagnostic Imaging Data Set (DIDS) - National Cancer Waiting Times Monitoring Data Set (CWT) - Civil Registries Data (CRD) (Births) - Civil Registries Data (CRD) (Deaths) - National Diabetes Audit (NDA) - Patient Reported Outcome Measures (PROMs) - e-Referral Service (eRS) - Personal Demographics Service (PDS) - Summary Hospital-level Mortality Indicator (SHMI) - Medicines Dispensed in Primary Care (NHSBSA Data) The pseudonymised data is required to for the following purposes: § Population health management: · Understanding the interdependency of care services · Targeting care more effectively · Using value as the redesign principle § Data Quality and Validation – allowing data quality checks on the submitted data § Thoroughly investigating the needs of the population, to ensure the right services are available for individuals when and where they need them § Understanding cohorts of residents who are at risk of becoming users of some of the more expensive services, to better understand and manage those needs § Monitoring population health and care interactions to understand where people may slip through the net, or where the provision of care may be being duplicated § Modelling activity across all data sets to understand how services interact with each other, and to understand how changes in one service may affect flows through another § Service redesign § Health Needs Assessment – identification of underlying disease prevalence within the local population § Patient stratification and predictive modelling - to highlight cohorts of patients at risk of requiring hospital admission and other avoidable factors such as risk of falls, computed using algorithms executed against linked de-identified data, and identification of future service delivery models § Demand Management - to improve the care service for patients by predicting the impact on certain care pathways and support the secondary care system in ensuring enough capacity to manage the demand. § Support measuring the health, mortality or care needs of the total local population. § Provide intelligence about the safety and effectiveness of medicines. The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets. Processing for commissioning will be conducted by NHS Arden and Greater East Midlands Commissioning Support Unit and NHS Midlands and Lancashire Commissioning Support Unit and NHS Arden and Greater East Midlands Commissioning Support Unit’s processing is a separate specialist analysis that supports the CCG in health care provision and health profiling of the population within the CCG areas. This is additional to the processing and analysis done by Midlands and Lancashire Commissioning Support Unit. This specialist analysis significantly complements the analysis undertaken by Midlands and Lancashire Commissioning Support Unit in their core business intelligence service to the CCGs.

Expected Benefits:

INVOICE VALIDATION The invoice validation process supports the ongoing delivery of patient care across the NHS and the CCG region by: 1. Ensuring that activity is fully financially validated. 2. Ensuring that service providers are accurately paid for the patients treatment. 3. Enabling services to be planned, commissioned, managed, and subjected to financial control. 4. Enabling commissioners to confirm that they are paying appropriately for treatment of patients for whom they are responsible. 5. Fulfilling commissioners duties to fiscal probity and scrutiny. 6. Ensuring full financial accountability for relevant organisations. 7. Ensuring robust commissioning and performance management. 8. Ensuring commissioning objectives do not compromise patient confidentiality. 9. Ensuring the avoidance of misappropriation of public funds. RISK STRATIFICATION Risk stratification promotes improved case management in primary care and will lead to the following benefits being realised: 1. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these. 2. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services thus allowing early intervention. 3. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required. 4. Supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework by allowing for more targeted intervention in primary care. 5. Better understanding of local population characteristics through analysis of their health and healthcare outcomes 6. Enables GPs to better target mental health care intervention. All of the above lead to improved patient experience and health outcomes through more effective commissioning of services. COMMISSIONING 1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, integrated care and pathways. a. Analysis to support full business cases. b. Develop business models. c. Monitor In year projects. 2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types. 3. Health economic modelling using: a. Analysis on provider performance against 18 weeks wait targets. b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients. c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway. d. Analysis to understand emergency care and linking A&E and Emergency Urgent Care Flows (EUCC). 4. Commissioning cycle support for grouping and re-costing previous activity. 5. Enables monitoring of: a. CCG outcome indicators. b. Financial and Non-financial validation of activity. c. Successful delivery of integrated care within the CCG. d. Checking frequent or multiple attendances to improve early intervention and avoid admissions. e. Case management. f. Care service planning. g. Commissioning and performance management. h. List size verification by GP practices. i. Understanding the care of patients in nursing homes. 6. Feedback to NHS service providers on data quality at an aggregate and individual record level – only on data initially provided by the service providers. 7. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these. 8. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services and early intervention of appropriate care. 9. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required. 10. Potentially reduced premature mortality by more targeted intervention in primary care, which supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework. 11. Better understanding of the health of and the variations in health outcomes within the population to help understand local population characteristics. 12. Better understanding of contract requirements, contract execution, and required services for management of existing contracts, and to assist with identification and planning of future contracts. 13. Insights into patient outcomes, and identification of the possible efficacy of outcomes-based contracting opportunities. 14. Providing greater understanding of the underlying courses and look to commission improved supportive networks, this would be ongoing work which would be continually assessed. 15. Insight to understand the numerous factors that play a role in the outcome for both datasets. The linkage will allow the reporting both prior to, during and after the activity, to provide greater assurance on predictive outcomes and delivery of best practice. 16. Provision of indicators of health problems, and patterns of risk within the commissioning region. 17. Support of benchmarking for evaluating progress in future years. 18. Allow reporting to drive changes and improve the quality of commissioned services and health outcomes for people. 19. Assists commissioners to make better decisions to support patients and drive changes in health care 20. Allows comparisons of providers performance to assist improvement in services – increase the quality 21. Allow analysis of health care provision to be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets. 22. To evaluate the impact of new services and innovations (e.g. if commissioners implement a new service or type of procedure with a provider, they can evaluate whether it improves outcomes for patients compared to the previous one). 23. Monitoring of entire population, as a pose to only those that engage with services 24. Enable Commissioners to be able to see early indications of potential practice resilience issues in that an early warning marker can often be a trend of patients re-registering themselves at a neighbouring practice. 25. Monitor the quality and safety of the delivery of healthcare services. 26. Allow focused commissioning support based on factual data rather than assumed and projected sources 27. Understand admissions linked to overprescribing. 28. Add value to the population health management workstream by adding prescribing data into linked dataset for segmentation and stratification.

Outputs:

INVOICE VALIDATION 1. The Controlled Environment for Finance (CEfF) will enable the CCG to challenge invoices and raise discrepancies and disputes. 2. Outputs from the CEfF will enable accurate production of budget reports, which will: a. Assist in addressing poor quality data issues b. Assist in business intelligence 3. Validation of invoices for non-contracted events where a service delivered to a patient by a provider that does not have a written contract with the patient’s responsible commissioner, but does have a written contract with another NHS commissioner/s. 4. Budget control of the CCG. INVOICE VALIDATION - Liaison Financial Services Ltd 1. Validation of Continuing Healthcare related invoices and payments 2. Independent Identification of potential overpayments made by the CCG through invoice validation 3. Liaising with providers with a view to recouping these monies 4. Review is completed for the retrospective period from date of contract with Liaison Financial Services back to 01/04/2013. 5. Reviews take 3-9 months depending on number of claims to investigate and resolve 6. Liaison Financial Services will repeat the exercise 2-3 years later 7. CCGs are able to request reviews to be done more frequently 8. SUS+ will only be requested each time a review was completed, and maybe requested at different times as independent reviews RISK STRATIFICATION 1. As part of the risk stratification processing activity detailed above, GPs have access to the risk stratification tool which highlights patients for whom the GP is responsible and have been classed as at risk. The only identifier available to GPs is the NHS numbers of their own patients. Any further identification of the patients will be completed by the GP on their own systems. 2. GP Practices will be able to view the risk scores for individual patients with the ability to display the underlying SUS+ data for the individual patients when it is required for direct care purposes by someone who has a legitimate relationship with the patient. CCGs will be able to: 3. Target specific vulnerable patient groups and enable clinicians with the duty of care for the patient to offer appropriate interventions. 4. Reduce hospital readmissions and targeting clinical interventions to high risk patients. 5. Identify patients at risk of deterioration and providing effective care. 6. Reduce in the difference in the quality of care between those with the best and worst outcomes. 7. Re-design care to reduce admissions. 8. Set up capitated budgets – budgets based on care provided to the specific population. 9. Identify health determinants of risk of admission to hospital, or other adverse care outcomes. 10. Monitor vulnerable groups of patients including but not limited to frailty, COPD, Diabetes, elderly. 11. Health needs assessments – identifying numbers of patients with specific health conditions or combination of conditions. 12. Classify vulnerable groups based on: disease profiles; conditions currently being treated; current service use; pharmacy use and risk of future overall cost. 13. Production of Theographs – a visual timeline of a patients encounters with hospital providers. 14. Analyse based on specific diseases. 15. The addition of Mental Health Services Data Set enriches the data available and will help GPs identify and prevent mental health patients from needing urgent hospital care and / or being admitted to a psychiatric hospital. In addition: - The risk stratification tool will provide aggregate reporting of number and percentage of population found to be at risk. - Record level output (pseudonymised) will be available for commissioners (of the CCG), pseudonymised at patient level. Onward sharing of this data is not permitted. COMMISSIONING 1. Commissioner reporting: a. Summary by provider view - plan & actuals year to date (YTD). b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD. c. Summary by provider view - activity & finance variance by POD. d. Planned care by provider view - activity & finance plan & actuals YTD. e. Planned care by POD view - activity plan & actuals YTD. f. Provider reporting. g. Statutory returns. h. Statutory returns - monthly activity return. i. Statutory returns - quarterly activity return. j. Delayed discharges. k. Quality & performance referral to treatment reporting. 2. Readmissions analysis. 3. Production of aggregate reports for CCG Business Intelligence. 4. Production of project / programme level dashboards. 5. Monitoring of acute / community / mental health quality matrix. 6. Clinical coding reviews / audits. 7. Budget reporting down to individual GP Practice level. 8. GP Practice level dashboard reports. 9. Comparators of CCG performance with similar CCGs as set out by a specific range of care quality and performance measures detailed activity and cost reports 10. Data Quality and Validation measures allowing data quality checks on the submitted data 11. Contract Management and Modelling 12. Patient Stratification, such as: o Patients at highest risk of admission o High cost activity uses (top 15%) o Frail and elderly o Patients that are currently in hospital o Patients with most referrals to secondary care o Patients with most emergency activity o Patients with most expensive prescriptions o Patients recently moving from one care setting to another i. Discharged from hospital ii. Discharged from community 13. Validation for payment approval, ability to validate that claims are not being made after an individual has died, like Oxygen services. 14. Validation of programs implemented to improve patient pathway e.g. High users unable to validate if the process to help patients find the best support are working or did the patient die. 15. Clinical - understand reasons why patients are dying, what additional support services can be put in to support. 16. Understanding where patient are dying e.g. are patients dying at hospitals due to hospices closing due to Local authorities withdrawing support, or is there a problem at a particular trust. 17. Removal of patients from Risk Stratification reports. 18. Re births provide a one stop shop of information, Births are recorded in multiple sources covering hospital and home births, a chance to overlook activity. 19. Manage demand, by understanding the quantity of assessments required CCGs are able to improve the care service for patients by predicting the impact on certain care pathways and ensure the secondary care system has enough capacity to manage the demand. 20. Monitor the timing of key actions relating to referral letters. CCG’s are unable to see the contents of the referral letters. 21. Identify low priority procedures which could be directed to community-based alternatives and as such commission these services and deflect referrals for low priority procedures resulting in a reduction in hospital referrals. 22. Allow Commissioners to better protect or improve the public health of the total local patient population 23. Allow Commissioners to plan, evaluate and monitor health and social care policies, services, or interventions for the total local patient population 24. Allow Commissioners to compare their providers (trusts) mortality outcomes to the national baseline. 25. Investigate mortality outcomes for trusts 26. Identify medication prescribing trends and their effectiveness. 27. Linking prescribing habits to entry points into the health and social care system 28. Identify, quantify and understand cohorts of patient’s high numbers of different medications (polypharmacy)

Processing:

PROCESSING CONDITIONS: Data must only be used for the purposes stipulated within this Data Sharing Agreement. Any additional disclosure / publication will require further approval from NHS Digital. Data Processors must only act upon specific instructions from the Data Controller. Data can only be stored at the addresses listed under storage addresses. All access to data is managed under Role-Based Access Controls. Users can only access data authorised by their role and the tasks that they are required to undertake. Patient level data will not be linked other than as specifically detailed within this Data Sharing Agreement. Data released will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data) The DSCRO (part of NHS Digital) will apply National Opt-outs before any identifiable data leaves the DSCRO only for the purpose of Risk Stratification. CCGs should work with general practices within their CCG to help them fulfil data controller responsibilities regarding flow of identifiable data into risk stratification tools. The identifier available in the data set is the NHS numbers. Any further identification of the patients will only be completed by the patient’s clinician on their own systems for the purpose of direct care with a legitimate relationship. ONWARD SHARING: Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data. Aggregated reports only with small number suppression can be shared externally as set out within NHS Digital guidance applicable to each data set. SEGREGATION: Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked. Where the Data Processor and/or the Data Controller hold identifiable data with opt outs applied and identifiable data with opt outs not applied, the data will be held separately so data cannot be linked. All access to data is auditable by NHS Digital. Data for the purpose of Invoice Validation is kept within the CEfF, and only used by staff properly trained and authorised for the activity. Only CEfF staff are able to access data in the CEfF and only CEfF staff operate the invoice validation process within the CEfF. Data flows directly in to the CEfF from the DSCRO and from the providers – it does not flow through any other processors. DATA MINIMISATION: Data Minimisation in relation to the data sets listed within the application are listed below. This also includes the purpose on which they would be applied - For the purpose of Commissioning: • Patients who are normally registered and/or resident within the NHS Black Country and West Birmingham CCG region (including historical activity where the patient was previously registered or resident in another commissioner). and/or • Patients treated by a provider where NHS Black Country and West Birmingham CCG is the host/co-ordinating commissioner and/or has the primary responsibility for the provider services in the local health economy – this is only for commissioning and relates to both national and local flows. and/or • Activity identified by the provider and recorded as such within national systems (such as SUS+) as for the attention of NHS Black Country and West Birmingham CCG - this is only for commissioning and relates to both national and local flows. For the purpose of Risk Stratification: • Patients who are normally registered and/or resident within the NHS Black Country and West Birmingham CCG region (including historical activity where the patient was previously registered or resident in another commissioner For the purpose of Invoice Validation: • Patients who are resident and/or registered within the CCG region. This includes data that was previously under a different organisation name but has now merged into this CCG. In addition to the dissemination of Cancer Waiting Times Data via the DSCRO, the CCG is able to access reports held within the CWT system in NHS Digital directly. Access within the CCG is limited to those with a need to process the data for the purposes described in this agreement. A CCG user will be able to access the provider extracts from the portal for any provider where at least 1 patient for whom they are the registered CCG for that individuals GP practice appears in that setting Although a CCG user may have access to pseudonymised patient information not related to that CCG, users should only process and analyse data for which they have a legitimate relationship (as described within Data Minimisation). Microsoft Limited provide Cloud Services for Liaison Financial Services Limited, Arden and Greater East Midlands Commissioning Support Unit and NHS Midlands and Lancashire Commissioning Support Unit. Microsoft Limited are therefore listed as a data processor. They supply support to the system, but do not access data. Therefore, any access to the data held under this agreement would be considered a breach of the agreement. This includes granting of access to the database[s] containing the data Greater Manchester Shared Services (hosted by Salford Royal NHS Foundation Trust) supply IT infrastructure for NHS Arden and GEM Commissioning Support Unit and are therefore listed as data processors. They supply support to the system, but do not access data. Therefore, any access to the data held under this agreement would be considered a breach of the agreement. This includes granting of access to the database[s] containing the data. Ilkeston Community Hospital (Part of Derbyshire Community Health Services NHS Foundation Trust) and Wrightington, Wigan and Leigh NHS Foundation Trust do not access data held under this agreement as they only supply the building. Therefore, any access to the data held under this agreement would be considered a breach of the agreement. This includes granting of access to the database[s] containing the data. Lima Networks Ltd supply IT infrastructure and are therefore listed as a data processor. They supply support to the system, but do not access data. Therefore, any access to the data held under this agreement would be considered a breach of the agreement. This includes granting of access to the database[s] containing the data. The Bunker do not access data held under this agreement as they only supply the building. Therefore, any access to the data held under this agreement would be considered a breach of the agreement. This includes granting of access to the database[s] containing the data. INVOICE VALIDATION Data processor 1 - NHS Arden and Greater East Midlands Commissioning Support Unit 1. Identifiable SUS+ is obtained from the SUS+ Repository to the Data Services for Commissioners Regional Office (DSCRO). 2. The DSCRO pushes a one-way data flow of SUS+ into the Controlled Environment for Finance (CEfF) in the NHS Arden and Greater East Midlands Commissioning Support Unit. 3. The CEfF also receive backing data from the provider. 4. NHS Arden and Greater East Midlands Commissioning Support Unit carry out the following processing activities within the CEfF for invoice validation purposes: a. Validating that the Clinical Commissioning Group are responsible for payment for the care of the individual by using SUS+, PDS and/or provider backing flow data. b. Once the provider backing information is received, this will be checked against national NHS and local commissioning policies as well as being checked against system access and reports provided by NHS Digital to confirm the payments are: i. In line with Payment by Results tariffs ii. are in relation to a patient registered with a CCG GP or resident within the CCG area. iii. The health care provided should be paid by the CCG in line with CCG guidance.  5. The CCG are notified that the invoice has been validated and can be paid. Any discrepancies or non-validated invoices are investigated and resolved between NHS Arden and Greater East Midlands Commissioning Support Unit CEfF team and the provider, meaning that no identifiable data needs to be sent to the CCG. The CCG only receives notification to pay and management reporting detailing the total quantum of invoices received pending, processed etc. Data Processor 2 - Liaison Financial Services Ltd 1. Identifiable SUS+ Data is obtained from the SUS+ Repository to the Data Services for Commissioners Regional Office (DSCRO). 2. The DSCRO pushes a one-way data flow of SUS+ data into the Controlled Environment for Finance (CEfF) in the Liaison Financial Services Ltd. 3. The CEfF also receive backing data from the provider. 4. Liaison Financial Services Ltd carry out the following processing activities within the CEfF for invoice validation purposes: a. Validating that the Clinical Commissioning Group are responsible for payment for the care of the individual by using SUS+ and/or provider backing flow data. b. Once the provider backing information is received, this will be checked against national NHS and local commissioning policies as well as being checked against system access and reports provided by NHS Digital to confirm the payments are: i. In line with Payment by Results tariffs ii. are in relation to a patient registered with a CCG GP or resident within the CCG area. iii. The health care provided should be paid by the CCG in line with CCG guidance.  5.The CCG are notified that the invoice has been validated and can be paid. Any discrepancies or non-validated invoices are investigated and resolved between Liaison Financial Services Ltd CEfF team and the provider, meaning that no identifiable data needs to be sent to the CCG. The CCG only receives notification to pay and management reporting detailing the total quantum of invoices received pending, processed etc. RISK STRATIFICATION Data processor 1 - NHS Midlands and Lancashire Commissioning Support Unit 1. Identifiable SUS+ and Mental Health Services Dataset (MHSDS) data is transferred to the Data Services for Commissioners Regional Office (DSCRO). 2. Data quality management and standardisation of data is completed by the DSCRO and the data identifiable at the level of NHS number is transferred securely to NHS Midlands and Lancashire Commissioning Support Unit, who securely hold the SUS+ and MHSDS data. 3. Identifiable GP Data is securely sent from the GP system to NHS Midlands and Lancashire Commissioning Support Unit. 4. SUS+ and MHSDS data is linked to GP data in the risk stratification tool by the data processor. 5. As part of the risk stratification processing activity, GPs have access to the risk stratification tool within the data processor, which highlights patients with whom the GP has a legitimate relationship and have been classed as at risk. The only identifier available to GPs is the NHS numbers of their own patients. Any further identification of the patients will be completed by the GP on their own systems. 6. Once NHS Midlands and Lancashire Commissioning Support Unit has completed the processing, the CCG can access the online system via a secure connection to access the data pseudonymised at patient level. Data processor 2 - Prescribing Services Limited 1. Identifiable SUS+ data is transferred to the Data Services for Commissioners Regional Office (DSCRO). 2. Data quality management and standardisation of data is completed by the DSCRO and the data identifiable at the level of NHS number is transferred securely to Prescribing Services Limited, who securely hold the SUS+ data. 3. Identifiable GP Data is securely sent from the GP system to Prescribing Services Limited. 4. SUS+ data is linked to GP data in the risk stratification tool by the data processor. 5. As part of the risk stratification processing activity, GPs have access to the risk stratification tool within the data processor, which highlights patients with whom the GP has a legitimate relationship and have been classed as at risk. The only identifier available to GPs is the NHS numbers of their own patients. Any further identification of the patients will be completed by the GP on their own systems. 6. Once Prescribing Services Limited has completed the processing, the CCG can access the online system via a secure connection to access the data pseudonymised at patient level. COMMISSIONING The Data Services for Commissioners Regional Office (DSCRO) obtains the following data sets: 1. SUS+ 2. Local Provider Flows (received directly from providers) a. Acute b. Ambulance c. Community d. Demand for Service e. Diagnostic Service f. Emergency Care g. Experience, Quality and Outcomes h. Mental Health i. Other Not Elsewhere Classified j. Population Data k. Primary Care Services l. Public Health Screening 3. Mental Health Minimum Data Set (MHMDS) 4. Mental Health Learning Disability Data Set (MHLDDS) 5. Mental Health Services Data Set (MHSDS) 6. Maternity Services Data Set (MSDS) 7. Improving Access to Psychological Therapy (IAPT) 8. Child and Young People Health Service (CYPHS) 9. Community Services Data Set (CSDS) 10. Diagnostic Imaging Data Set (DIDS) 11. National Cancer Waiting Times Monitoring Data Set (CWT) 12. Civil Registries Data (CRD) (Births) 13. Civil Registries Data (CRD) (Deaths) 14. National Diabetes Audit (NDA) 15. Patient Reported Outcome Measures (PROMs) 16. e-Referral Service (eRS) 17. Personal Demographics Service (PDS) 18. Summary Hospital-level Mortality Indicator (SHMI) 19. Medicines Dispensed in Primary Care (NHSBSA Data) Data quality management and pseudonymisation is completed within the DSCRO and is then disseminated as follows: Data Processor 1 – NHS Midlands and Lancashire Commissioning Support Unit 1. Pseudonymised SUS+, Local Provider data, Mental Health data (MHSDS, MHMDS, MHLDDS), Maternity data (MSDS), Improving Access to Psychological Therapies data (IAPT), Child and Young People’s Health data (CYPHS), Community Services Data Set (CSDS), Diagnostic Imaging data (DIDS), National Cancer Waiting Times Monitoring Data Set (CWT), Civil Registries Data (CRD) (Births and Deaths), National Diabetes Audit (NDA), Patient Reported Outcome Measures (PROMs), e-Referral Service (eRS), Personal Demographics Service (PDS), Summary Hospital-level Mortality Indicator (SHMI) and Medicines Dispensed in Primary Care (NHSBSA Data) only is securely transferred from the DSCRO to NHS Midlands and Lancashire Commissioning Support Unit. 2. NHS Midlands and Lancashire Commissioning Support Unit add derived fields by using existing data, link data and provide analysis to: a. See patient journeys for pathways or service design, re-design and de-commissioning. b. Check recorded activity against contracts or invoices and facilitate discussions with providers. c. Undertake population health management d. Undertake data quality and validation checks e. Thoroughly investigate the needs of the population f. Understand cohorts of residents who are at risk g. Conduct Health Needs Assessments 3. Allowed linkage is between the data sets contained within point 1. 4. NHS Midlands and Lancashire Commissioning Support Unit then pass the processed, pseudonymised and linked data to the CCG. 5. Aggregation of required data for CCG management use will be completed by NHS Midlands and Lancashire Commissioning Support Unit or the CCG as instructed by the CCG. 6. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set. Data Processor 2 – NHS Arden and Greater East Midlands Commissioning Support Unit 1. Pseudonymised SUS+, Local Provider data, Mental Health data (MHSDS, MHMDS, MHLDDS), Maternity data (MSDS), Improving Access to Psychological Therapies data (IAPT), Child and Young People’s Health data (CYPHS), Community Services Data Set (CSDS), Diagnostic Imaging data (DIDS), National Cancer Waiting Times Monitoring Data Set (CWT), Civil Registries Data (CRD) (Births and Deaths), National Diabetes Audit (NDA), Patient Reported Outcome Measures (PROMs), e-Referral Service (eRS), Personal Demographics Service (PDS) and Summary Hospital-level Mortality Indicator (SHMI) data only is securely transferred from the DSCRO to NHS Midlands and Lancashire Commissioning Support Unit. 2. NHS Arden and Greater East Midlands Commissioning Support Unit add derived fields by using existing data, link data and provide analysis to: a. See patient journeys for pathways or service design, re-design and de-commissioning. b. Check recorded activity against contracts or invoices and facilitate discussions with providers. c. Undertake population health management d. Undertake data quality and validation checks e. Thoroughly investigate the needs of the population f. Understand cohorts of residents who are at risk g. Conduct Health Needs Assessments 3. Allowed linkage is between the data sets contained within point 1. 4. NHS Arden and Greater East Midlands Commissioning Support Unit then pass the processed, pseudonymised and linked data to the CCG. 5. Aggregation of required data for CCG management use will be completed by NHS Arden and Greater East Midlands Commissioning Support Unit or the CCG as instructed by the CCG. 6. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set.


Project 3 — DARS-NIC-41158-X3V7D

Opt outs honoured: No - data flow is not identifiable, Yes - patient objections upheld (Section 251, Section 251 NHS Act 2006, Mixture of confidential data flow(s) with support under section 251 NHS Act 2006 and non-confidential data flow(s))

Sensitive: Sensitive

When: 2018/06 — 2021/03.

Repeats: Frequent adhoc flow, Frequent Adhoc Flow, One-Off

Legal basis: Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Health and Social Care Act 2012 – s261(7), National Health Service Act 2006 - s251 - 'Control of patient information'.

Categories: Anonymised - ICO code compliant, Identifiable

Datasets:

  • Acute-Local Provider Flows
  • Ambulance-Local Provider Flows
  • Children and Young People Health
  • Community-Local Provider Flows
  • Demand for Service-Local Provider Flows
  • Diagnostic Imaging Dataset
  • Diagnostic Services-Local Provider Flows
  • Emergency Care-Local Provider Flows
  • Experience, Quality and Outcomes-Local Provider Flows
  • Improving Access to Psychological Therapies Data Set
  • Maternity Services Data Set
  • Mental Health and Learning Disabilities Data Set
  • Mental Health Minimum Data Set
  • Mental Health Services Data Set
  • Mental Health-Local Provider Flows
  • National Cancer Waiting Times Monitoring DataSet (CWT)
  • Other Not Elsewhere Classified (NEC)-Local Provider Flows
  • Population Data-Local Provider Flows
  • Primary Care Services-Local Provider Flows
  • Public Health and Screening Services-Local Provider Flows
  • Community Services Data Set
  • SUS for Commissioners
  • Civil Registration - Births
  • Civil Registration - Deaths
  • National Diabetes Audit
  • Patient Reported Outcome Measures

Objectives:

Invoice Validation Invoice validation is part of a process by which providers of care or services get paid for the work they do. Invoices are submitted to the Clinical Commissioning Group (CCG) so they are able to ensure that the activity claimed for each patient is their responsibility. This is done by processing and analysing Secondary User Services (SUS+) data, which is received into a secure Controlled Environment for Finance (CEfF). The SUS+ data is identifiable at the level of NHS number. The NHS number is only used to confirm the accuracy of backing-data sets and will not be used further. Invoice Validation with be conducted by NHS Arden and Greater East Midlands Commissioning Support Unit. The CCG are advised by NHS Arden and Greater East Midlands Commissioning Support Unit whether payment for invoices can be made or not. Risk Stratification Risk stratification is a tool for identifying and predicting which patients are at high risk or are likely to be at high risk and prioritising the management of their care in order to prevent worse outcomes. To conduct risk stratification Secondary User Services (SUS+) data, identifiable at the level of NHS number is linked with Primary Care data (from GPs) and an algorithm is applied to produce risk scores. Risk Stratification provides focus for future demands by enabling commissioners to prepare plans for patients. Commissioners can then prepare plans for patients who may require high levels of care. Risk Stratification also enables General Practitioners (GPs) to better target intervention in Primary Care. Commissioning To use pseudonymised data to provide intelligence to support the commissioning of health services. The data (containing both clinical and financial information) is analysed so that health care provision can be planned to support the needs of the population within the CCG area. The CCGs commission services from a range of providers covering a wide array of services. Each of the data flow categories requested supports the commissioned activity of one or more providers. The following pseudonymised datasets are required to provide intelligence to support commissioning of health services: - Secondary Uses Service (SUS+) - Local Provider Flows o Acute o Ambulance o Community o Demand for Service o Diagnostic Service o Emergency Care o Experience, Quality and Outcomes o Mental Health o Other Not Elsewhere Classified o Population Data o Primary Care Services o Public Health Screening - Mental Health Minimum Data Set (MHMDS) - Mental Health Learning Disability Data Set (MHLDDS) - Mental Health Services Data Set (MHSDS) - Maternity Services Data Set (MSDS) - Improving Access to Psychological Therapy (IAPT) - Child and Young People Health Service (CYPHS) - Diagnostic Imaging Data Set (DIDS) - Community Services Data Set (CSDS) - National Cancer Waiting Times Monitoring Data Set (CWT) The pseudonymised data is required to for the following purposes: § Population health management: • Understanding the interdependency of care services • Targeting care more effectively • Using value as the redesign principle § Data Quality and Validation – allowing data quality checks on the submitted data § Thoroughly investigating the needs of the population, to ensure the right services are available for individuals when and where they need them § Understanding cohorts of residents who are at risk of becoming users of some of the more expensive services, to better understand and manage those needs § Monitoring population health and care interactions to understand where people may slip through the net, or where the provision of care may be being duplicated § Modelling activity across all data sets to understand how services interact with each other, and to understand how changes in one service may affect flows through another § Service redesign § Health Needs Assessment – identification of underlying disease prevalence within the local population § Patient stratification and predictive modelling - to identify specific patients at risk of requiring hospital admission and other avoidable factors such as risk of falls, computed using algorithms executed against linked de-identified data, and identification of future service delivery models The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets. Processing for commissioning will be conducted by NHS Midlands and Lancashire Commissioning Support Unit.

Yielded Benefits:

.

Expected Benefits:

Invoice Validation 1. Financial validation of activity 2. CCG Budget control 3. Commissioning and performance management 4. Meeting commissioning objectives without compromising patient confidentiality 5. The avoidance of misappropriation of public funds to ensure the ongoing delivery of patient care Risk Stratification Risk stratification promotes improved case management in primary care and will lead to the following benefits being realised: 1. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these. 2. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services thus allowing early intervention. 3. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required. 4. Supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework by allowing for more targeted intervention in primary care. 5. Better understanding of local population characteristics through analysis of their health and healthcare outcomes All of the above lead to improved patient experience through more effective commissioning of services. Commissioning 1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, integrated care and pathways. a. Analysis to support full business cases. b. Develop business models. c. Monitor In year projects. 2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types. 3. Health economic modelling using: a. Analysis on provider performance against 18 weeks wait targets. b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients. c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway. d. Analysis to understand emergency care and linking A&E and Emergency Urgent Care Flows (EUCC). 4. Commissioning cycle support for grouping and re-costing previous activity. 5. Enables monitoring of: a. CCG outcome indicators. b. Financial and Non-financial validation of activity. c. Successful delivery of integrated care within the CCG. d. Checking frequent or multiple attendances to improve early intervention and avoid admissions. e. Case management. f. Care service planning. g. Commissioning and performance management. h. List size verification by GP practices. i. Understanding the care of patients in nursing homes. 6. Feedback to NHS service providers on data quality at an aggregate and individual record level – only on data initially provided by the service providers. 7. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these. 8. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services and early intervention of appropriate care. 9. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required. 10. Potentially reduced premature mortality by more targeted intervention in primary care, which supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework. 11. Better understanding of the health of and the variations in health outcomes within the population to help understand local population characteristics. 12. Better understanding of contract requirements, contract execution, and required services for management of existing contracts, and to assist with identification and planning of future contracts 13. Insights into patient outcomes, and identification of the possible efficacy of outcomes-based contracting opportunities.

Outputs:

Invoice Validation 1. Addressing poor data quality issues 2. Production of reports for business intelligence 3. Budget reporting 4. Validation of invoices for non-contracted events Risk Stratification 1. As part of the risk stratification processing activity detailed above, GPs have access to the risk stratification tool which highlights patients for whom the GP is responsible and have been classed as at risk. The only identifier available to GPs is the NHS numbers of their own patients. Any further identification of the patients will be completed by the GP on their own systems. 2. Output from the risk stratification tool will provide aggregate reporting of number and percentage of population found to be at risk. 3. Record level output will be available for commissioners (of the CCG), pseudonymised at patient level. 4. GP Practices will be able to view the risk scores for individual patients with the ability to display the underlying SUS+ data for the individual patients when it is required for direct care purposes by someone who has a legitimate relationship with the patient. 5. The CCG will be able to target specific patient groups and enable clinicians with the duty of care for the patient to offer appropriate interventions. The CCG will also be able to: o Stratify populations based on: disease profiles; conditions currently being treated; current service use; pharmacy use and risk of future overall cost o Plan work for commissioning services and contracts o Set up capitated budgets o Identify health determinants of risk of admission to hospital, or other adverse care outcomes. Commissioning 1. Commissioner reporting: a. Summary by provider view - plan & actuals year to date (YTD). b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD. c. Summary by provider view - activity & finance variance by POD. d. Planned care by provider view - activity & finance plan & actuals YTD. e. Planned care by POD view - activity plan & actuals YTD. f. Provider reporting. g. Statutory returns. h. Statutory returns - monthly activity return. i. Statutory returns - quarterly activity return. j. Delayed discharges. k. Quality & performance referral to treatment reporting. 2. Readmissions analysis. 3. Production of aggregate reports for CCG Business Intelligence. 4. Production of project / programme level dashboards. 5. Monitoring of acute / community / mental health quality matrix. 6. Clinical coding reviews / audits. 7. Budget reporting down to individual GP Practice level. 8. GP Practice level dashboard reports include high flyers. 9. Comparators of CCG performance with similar CCGs as set out by a specific range of care quality and performance measures detailed activity and cost reports 10. Data Quality and Validation measures allowing data quality checks on the submitted data 11. Contract Management and Modelling 12. Patient Stratification, such as: o Patients at highest risk of admission o Most expensive patients (top 15%) o Frail and elderly o Patients that are currently in hospital o Patients with most referrals to secondary care o Patients with most emergency activity o Patients with most expensive prescriptions o Patients recently moving from one care setting to another i. Discharged from hospital ii. Discharged from community

Processing:

Data must only be used as stipulated within this Data Sharing Agreement. Data Processors must only act upon specific instructions from the Data Controller. Data can only be stored at the addresses listed under storage addresses. Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data. All access to data is managed under Roles-Based Access Controls No patient level data will be linked other than as specifically detailed within this agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality and that data required by the applicant. NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data) The DSCRO (part of NHS Digital) will apply Type 2 objections before any identifiable data leaves the DSCRO. CCGs should work with general practices within their CCG to help them fulfil data controller responsibilities regarding flow of identifiable data into risk stratification tools. Segregation Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked. All access to data is auditable by NHS Digital. Data for the purpose of Invoice Validation is kept within the CEfF, and only used by staff properly trained and authorised for the activity. Only CEfF staff are able to access data in the CEfF and only CEfF staff operate the invoice validation process within the CEfF. Data flows directly in to the CEfF from the DSCRO and from the providers – it does not flow through any other processors. Invoice Validation Data Processor – NHS Arden and Greater East Midlands Commissioning Support Unit 1. Identifiable SUS+ Data is obtained from the SUS+ Repository to the Data Services for Commissioners Regional Office (DSCRO). 2. The DSCRO pushes a one-way data flow of SUS+ data into the Controlled Environment for Finance (CEfF) in the NHS Arden and Greater East Midlands Commissioning Support Unit. 3. NHS Arden and Greater East Midlands Commissioning Support Unit carry out the following processing activities within the CEfF for invoice validation purposes: a. Validating that the Clinical Commissioning Group is responsible for payment for the care of the individual by using SUS+ and/or backing flow data. b. Once the backing information is received, this will be checked against national NHS and local commissioning policies as well as being checked against system access and reports provided by NHS Digital to confirm the payments are: i. In line with Payment by Results tariffs ii. are in relation to a patient registered with a CCG GP or resident within the CCG area. iii. The health care provided should be paid by the CCG in line with CCG guidance.  4. The CCG are notified that the invoice has been validated and can be paid. Any discrepancies or non-validated invoices are investigated and resolved between NHS Arden and Greater East Midlands Commissioning Support Unit CEfF team and the provider meaning that no identifiable data needs to be sent to the CCG. The CCG only receives notification to pay and management reporting detailing the total quantum of invoices received pending, processed etc. Risk Stratification Data Processor – NHS Midlands and Lancashire Commissioning Support Unit 1. Identifiable SUS+ data is obtained from the SUS Repository to the Data Services for Commissioners Regional Office (DSCRO). 2. Data quality management and standardisation of data is completed by the DSCRO and the data identifiable at the level of NHS number is transferred securely to NHS Midlands and Lancashire Commissioning Support Unit, who hold the SUS+ data within the secure Data Centre on N3. 3. Identifiable GP Data is securely sent from the GP system to NHS Midlands and Lancashire Commissioning Support Unit. 4. SUS+ data is linked to GP data in the risk stratification tool by the data processor. 5. As part of the risk stratification processing activity, GPs have access to the risk stratification tool within the data processor, which highlights patients with whom the GP has a legitimate relationship and have been classed as at risk. The only identifier available to GPs is the NHS numbers of their own patients. Any further identification of the patients will be completed by the GP on their own systems. 6. Once NHS Midlands and Lancashire Commissioning Support Unit has completed the processing, the CCG can access the online system via a secure connection to access the data pseudonymised at patient level. Commissioning Data Processor – NHS Midlands and Lancashire Commissioning Support Unit 1. Pseudonymised SUS+, Local Provider data, Mental Health data (MHSDS, MHMDS, MHLDDS), Maternity data (MSDS), Improving Access to Psychological Therapies data (IAPT), Child and Young People’s Health data (CYPHS), Community Services Data Set (CSDS) , National Cancer Waiting Times Monitoring Data Set (CWT) and Diagnostic Imaging data (DIDS) only is securely transferred from the DSCRO to NHS Midlands and Lancashire Commissioning Support Unit. 2. NHS Midlands and Lancashire Commissioning Support Unitadd derived fields, link data and provide analysis to: a. See patient journeys for pathways or service design, re-design and de-commissioning. b. Check recorded activity against contracts or invoices and facilitate discussions with providers. c. Undertake population health management d. Undertake data quality and validation checks e. Thoroughly investigate the needs of the population f. Understand cohorts of residents who are at risk g. Conduct Health Needs Assessments 3. Allowed linkage is between the data sets contained within point 1. 4. NHS Midlands and Lancashire Commissioning Support Unit then pass the processed, pseudonymised and linked data to the CCG. 5. Aggregation of required data for CCG management use will be completed by NHS Midlands and Lancashire Commissioning Support Unit or the CCG as instructed by the CCG. 6. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set.


Project 4 — DARS-NIC-41140-T4H0T

Opt outs honoured: No - data flow is not identifiable, Yes - patient objections upheld (Section 251, Mixed, Mixture of confidential data flow(s) with consent and flow(s) with support under section 251 NHS Act 2006)

Sensitive: Sensitive, and Non Sensitive

When: 2018/06 — 2021/03.

Repeats: Frequent adhoc flow, Frequent Adhoc Flow, One-Off

Legal basis: Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Health and Social Care Act 2012 – s261(7), National Health Service Act 2006 - s251 - 'Control of patient information'.

Categories: Anonymised - ICO code compliant, Identifiable

Datasets:

  • Acute-Local Provider Flows
  • Ambulance-Local Provider Flows
  • Children and Young People Health
  • Community-Local Provider Flows
  • Demand for Service-Local Provider Flows
  • Diagnostic Imaging Dataset
  • Diagnostic Services-Local Provider Flows
  • Emergency Care-Local Provider Flows
  • Experience, Quality and Outcomes-Local Provider Flows
  • Improving Access to Psychological Therapies Data Set
  • Maternity Services Data Set
  • Mental Health and Learning Disabilities Data Set
  • Mental Health Minimum Data Set
  • Mental Health Services Data Set
  • Mental Health-Local Provider Flows
  • Other Not Elsewhere Classified (NEC)-Local Provider Flows
  • Population Data-Local Provider Flows
  • Primary Care Services-Local Provider Flows
  • Public Health and Screening Services-Local Provider Flows
  • SUS for Commissioners
  • Civil Registration - Births
  • Civil Registration - Deaths
  • Community Services Data Set
  • National Cancer Waiting Times Monitoring DataSet (CWT)
  • National Diabetes Audit
  • Patient Reported Outcome Measures

Objectives:

Invoice Validation Invoice validation is part of a process by which providers of care or services get paid for the work they do. Invoices are submitted to the Clinical Commissioning Group (CCG) so they are able to ensure that the activity claimed for each patient is their responsibility. This is done by processing and analysing Secondary User Services (SUS+) data, which is received into a secure Controlled Environment for Finance (CEfF). The SUS+ data is identifiable at the level of NHS number. The NHS number is only used to confirm the accuracy of backing-data sets and will not be used further. The legal basis for this to occur is under Section 251 of NHS Act 2006. Invoice Validation with be conducted by NHS Midlands and Lancashire Commissioning Support Unit The CCG are advised by NHS Midlands and Lancashire Commissioning Support Unit whether payment for invoices can be made or not. Risk Stratification Risk stratification is a tool for identifying and predicting which patients are at high risk or are likely to be at high risk and prioritising the management of their care in order to prevent worse outcomes. To conduct risk stratification Secondary User Services (SUS+) data, identifiable at the level of NHS number is linked with Primary Care data (from GPs) and an algorithm is applied to produce risk scores. Risk Stratification provides focus for future demands by enabling commissioners to prepare plans for patients. Commissioners can then prepare plans for patients who may require high levels of care. Risk Stratification also enables General Practitioners (GPs) to better target intervention in Primary Care. The legal basis for this to occur is under Section 251 of NHS Act 2006 (CAG 7-04(a)). Risk Stratification will be conducted by NHS Midlands and Lancashire Commissioning Support Unit. Commissioning To use pseudonymised data to provide intelligence to support the commissioning of health services. The data (containing both clinical and financial information) is analysed so that health care provision can be planned to support the needs of the population within the CCG area. The CCGs commission services from a range of providers covering a wide array of services. Each of the data flow categories requested supports the commissioned activity of one or more providers. The following pseudonymised datasets are required to provide intelligence to support commissioning of health services: - Secondary Uses Service (SUS+) - Local Provider Flows o Acute o Ambulance o Community o Demand for Service o Diagnostic Service o Emergency Care o Experience, Quality and Outcomes o Mental Health o Other Not Elsewhere Classified o Population Data o Primary Care Services o Public Health Screening - Mental Health Minimum Data Set (MHMDS) - Mental Health Learning Disability Data Set (MHLDDS) - Mental Health Services Data Set (MHSDS) - Maternity Services Data Set (MSDS) - Improving Access to Psychological Therapy (IAPT) - Child and Young People Health Service (CYPHS) - Diagnostic Imaging Data Set (DIDS) The pseudonymised data is required to for the following purposes: § Population health management: • Understanding the interdependency of care services • Targeting care more effectively • Using value as the redesign principle § Data Quality and Validation – allowing data quality checks on the submitted data § Thoroughly investigating the needs of the population, to ensure the right services are available for individuals when and where they need them § Understanding cohorts of residents who are at risk of becoming users of some of the more expensive services, to better understand and manage those needs § Monitoring population health and care interactions to understand where people may slip through the net, or where the provision of care may be being duplicated § Modelling activity across all data sets to understand how services interact with each other, and to understand how changes in one service may affect flows through another § Service redesign § Health Needs Assessment – identification of underlying disease prevalence within the local population § Patient stratification and predictive modelling - to identify specific patients at risk of requiring hospital admission and other avoidable factors such as risk of falls, computed using algorithms executed against linked de-identified data, and identification of future service delivery models The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets. Processing for commissioning will be conducted by NHS Midlands and Lancashire Commissioning Support Unit

Expected Benefits:

Invoice Validation 1. Financial validation of activity 2. CCG Budget control 3. Commissioning and performance management 4. Meeting commissioning objectives without compromising patient confidentiality 5. The avoidance of misappropriation of public funds to ensure the ongoing delivery of patient care Risk Stratification Risk stratification promotes improved case management in primary care and will lead to the following benefits being realised: 1. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these. 2. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services thus allowing early intervention. 3. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required. 4. Supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework by allowing for more targeted intervention in primary care. 5. Better understanding of local population characteristics through analysis of their health and healthcare outcomes All of the above lead to improved patient experience through more effective commissioning of services. Commissioning 1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, integrated care and pathways. a. Analysis to support full business cases. b. Develop business models. c. Monitor In year projects. 2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types. 3. Health economic modelling using: a. Analysis on provider performance against 18 weeks wait targets. b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients. c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway. d. Analysis to understand emergency care and linking A&E and Emergency Urgent Care Flows (EUCC). 4. Commissioning cycle support for grouping and re-costing previous activity. 5. Enables monitoring of: a. CCG outcome indicators. b. Financial and Non-financial validation of activity. c. Successful delivery of integrated care within the CCG. d. Checking frequent or multiple attendances to improve early intervention and avoid admissions. e. Case management. f. Care service planning. g. Commissioning and performance management. h. List size verification by GP practices. i. Understanding the care of patients in nursing homes. 6. Feedback to NHS service providers on data quality at an aggregate and individual record level – only on data initially provided by the service providers. 7. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these. 8. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services and early intervention of appropriate care. 9. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required. 10. Potentially reduced premature mortality by more targeted intervention in primary care, which supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework. 11. Better understanding of the health of and the variations in health outcomes within the population to help understand local population characteristics. 12. Better understanding of contract requirements, contract execution, and required services for management of existing contracts, and to assist with identification and planning of future contracts 13. Insights into patient outcomes, and identification of the possible efficacy of outcomes-based contracting opportunities.

Outputs:

Invoice Validation 1. Addressing poor data quality issues 2. Production of reports for business intelligence 3. Budget reporting 4. Validation of invoices for non-contracted events Risk Stratification 1. As part of the risk stratification processing activity detailed above, GPs have access to the risk stratification tool which highlights patients for whom the GP is responsible and have been classed as at risk. The only identifier available to GPs is the NHS numbers of their own patients. Any further identification of the patients will be completed by the GP on their own systems. 2. Output from the risk stratification tool will provide aggregate reporting of number and percentage of population found to be at risk. 3. Record level output will be available for commissioners (of the CCG), pseudonymised at patient level. 4. GP Practices will be able to view the risk scores for individual patients with the ability to display the underlying SUS+ data for the individual patients when it is required for direct care purposes by someone who has a legitimate relationship with the patient. 5. The CCG will be able to target specific patient groups and enable clinicians with the duty of care for the patient to offer appropriate interventions. The CCG will also be able to: o Stratify populations based on: disease profiles; conditions currently being treated; current service use; pharmacy use and risk of future overall cost o Plan work for commissioning services and contracts o Set up capitated budgets o Identify health determinants of risk of admission to hospital, or other adverse care outcomes. Commissioning 1. Commissioner reporting: a. Summary by provider view - plan & actuals year to date (YTD). b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD. c. Summary by provider view - activity & finance variance by POD. d. Planned care by provider view - activity & finance plan & actuals YTD. e. Planned care by POD view - activity plan & actuals YTD. f. Provider reporting. g. Statutory returns. h. Statutory returns - monthly activity return. i. Statutory returns - quarterly activity return. j. Delayed discharges. k. Quality & performance referral to treatment reporting. 2. Readmissions analysis. 3. Production of aggregate reports for CCG Business Intelligence. 4. Production of project / programme level dashboards. 5. Monitoring of acute / community / mental health quality matrix. 6. Clinical coding reviews / audits. 7. Budget reporting down to individual GP Practice level. 8. GP Practice level dashboard reports include high flyers. 9. Comparators of CCG performance with similar CCGs as set out by a specific range of care quality and performance measures detailed activity and cost reports 10. Data Quality and Validation measures allowing data quality checks on the submitted data 11. Contract Management and Modelling 12. Patient Stratification, such as: o Patients at highest risk of admission o Most expensive patients (top 15%) o Frail and elderly o Patients that are currently in hospital o Patients with most referrals to secondary care o Patients with most emergency activity o Patients with most expensive prescriptions o Patients recently moving from one care setting to another i. Discharged from hospital ii. Discharged from community

Processing:

Data must only be used as stipulated within this Data Sharing Agreement. Data Processors must only act upon specific instructions from the Data Controller. Data can only be stored at the addresses listed under storage addresses. The Data Controller and any Data Processor will only have access to records of patients of residence and registration within the CCG. Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data. All access to data is managed under Roles-Based Access Controls No patient level data will be linked other than as specifically detailed within this agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality and that data required by the applicant. NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data) The DSCRO (part of NHS Digital) will apply Type 2 objections before any identifiable data leaves the DSCRO. CCGs should work with general practices within their CCG to help them fulfil data controller responsibilities regarding flow of identifiable data into risk stratification tools. Segregation Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked. All access to data is auditable by NHS Digital. Data for the purpose of Invoice Validation is kept within the CEfF, and only used by staff properly trained and authorised for the activity. Only CEfF staff are able to access data in the CEfF and only CEfF staff operate the invoice validation process within the CEfF. Data flows directly in to the CEfF from the DSCRO and from the providers – it does not flow through any other processors. Invoice Validation 1. Identifiable SUS+ Data is obtained from the SUS+ Repository to the Data Services for Commissioners Regional Office (DSCRO). 2. The DSCRO pushes a one-way data flow of SUS+ data into the Controlled Environment for Finance (CEfF) in the NHS Midlands and Lancashire Commissioning Support Unit 3. The CSU carry out the following processing activities within the CEfF for invoice validation purposes: a. Validating that the Clinical Commissioning Group is responsible for payment for the care of the individual by using SUS+ and/or backing flow data. b. Once the backing information is received, this will be checked against national NHS and local commissioning policies as well as being checked against system access and reports provided by NHS Digital to confirm the payments are: i. In line with Payment by Results tariffs ii. are in relation to a patient registered with a CCG GP or resident within the CCG area. iii. The health care provided should be paid by the CCG in line with CCG guidance.  4. The CCG are notified that the invoice has been validated and can be paid. Any discrepancies or non-validated invoices are investigated and resolved between NHS Midlands and Lancashire Commissioning Support Unit CEfF team and the provider meaning that no identifiable data needs to be sent to the CCG. The CCG only receives notification to pay and management reporting detailing the total quantum of invoices received pending, processed etc. Risk Stratification 1. Identifiable SUS+ data is obtained from the SUS Repository to the Data Services for Commissioners Regional Office (DSCRO). 2. Data quality management and standardisation of data is completed by the DSCRO and the data identifiable at the level of NHS number is transferred securely to NHS Midlands and Lancashire Commissioning Support Unit who hold the SUS+ data within the secure Data Centre on N3. 3. Identifiable GP Data is securely sent from the GP system to NHS Midlands and Lancashire Commissioning Support Unit. 4. SUS+ data is linked to GP data in the risk stratification tool by the data processor. 5. As part of the risk stratification processing activity, GPs have access to the risk stratification tool within the data processor, which highlights patients with whom the GP has a legitimate relationship and have been classed as at risk. The only identifier available to GPs is the NHS numbers of their own patients. Any further identification of the patients will be completed by the GP on their own systems. 6. Once NHS Midlands and Lancashire Commissioning Support Unit has completed the processing, the CCG can access the online system via a secure connection to access the data pseudonymised at patient level. Commissioning The Data Services for Commissioners Regional Office (DSCRO) obtains the following data sets: 1. SUS+ 2. Local Provider Flows (received directly from providers) a. Acute b. Ambulance c. Community d. Demand for Service e. Diagnostic Service f. Emergency Care g. Experience, Quality and Outcomes h. Mental Health i. Other Not Elsewhere Classified j. Population Data k. Primary Care Services l. Public Health Screening 3. Mental Health Minimum Data Set (MHMDS) 4. Mental Health Learning Disability Data Set (MHLDDS) 5. Mental Health Services Data Set (MHSDS) 6. Maternity Services Data Set (MSDS) 7. Improving Access to Psychological Therapy (IAPT) 8. Child and Young People Health Service (CYPHS) 9. Diagnostic Imaging Data Set (DIDS) Data quality management and pseudonymisation is completed within the DSCRO and is then disseminated as follows: Data Processor 1 – NHS Midlands and Lancashire Commissioning Support Unit Pseudonymised SUS+, Local Provider data, Mental Health data (MHSDS, MHMDS, MHLDDS), Maternity data (MSDS), Improving Access to Psychological Therapies data (IAPT), Child and Young People’s Health data (CYPHS), Diagnostic Imaging data (DIDS) is securely transferred from the DSCRO to NHS Midlands and Lancashire Commissioning Support Unit. NHS Midlands and Lancashire Commissioning Support Unit add derived fields, link data and provide analysis to: a. See patient journeys for pathways or service design, re-design and de-commissioning. b. Check recorded activity against contracts or invoices and facilitate discussions with providers. c. Undertake population health management d. Undertake data quality and validation checks e. Thoroughly investigate the needs of the population f. Understand cohorts of residents who are at risk g. Conduct Health Needs Assessments 1. Allowed linkage is between the data sets contained within point 1. 2. NHS Midlands and Lancashire Commissioning Support Unit then pass the processed, pseudonymised and linked data to the CCG. 3. Aggregation of required data for CCG management use will be completed by NHS Midlands and Lancashire Commissioning Support Unit or the CCG as instructed by the CCG. 4. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set.


Project 5 — DARS-NIC-41125-L4F2X

Opt outs honoured: N, Y, No - data flow is not identifiable, Yes - patient objections upheld (Does not include the flow of confidential data, Section 251)

Sensitive: Sensitive

When: 2018/06 — 2021/03.

Repeats: Frequent adhoc flow, Frequent Adhoc Flow, One-Off

Legal basis: Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Section 251 approval is in place for the flow of identifiable data, National Health Service Act 2006 - s251 - 'Control of patient information'.

Categories: Anonymised - ICO code compliant, Identifiable

Datasets:

  • Acute-Local Provider Flows
  • Ambulance-Local Provider Flows
  • Children and Young People Health
  • Community Services Data Set
  • Community-Local Provider Flows
  • Demand for Service-Local Provider Flows
  • Diagnostic Imaging Dataset
  • Diagnostic Services-Local Provider Flows
  • Emergency Care-Local Provider Flows
  • Experience, Quality and Outcomes-Local Provider Flows
  • Improving Access to Psychological Therapies Data Set
  • Maternity Services Data Set
  • Mental Health and Learning Disabilities Data Set
  • Mental Health Minimum Data Set
  • Mental Health Services Data Set
  • Mental Health-Local Provider Flows
  • National Cancer Waiting Times Monitoring DataSet (CWT)
  • Other Not Elsewhere Classified (NEC)-Local Provider Flows
  • Population Data-Local Provider Flows
  • Primary Care Services-Local Provider Flows
  • Public Health and Screening Services-Local Provider Flows
  • SUS for Commissioners
  • Civil Registration - Births
  • Civil Registration - Deaths
  • National Diabetes Audit
  • Patient Reported Outcome Measures

Objectives:

Invoice Validation Invoice validation is part of a process by which providers of care or services get paid for the work they do. Invoices are submitted to the Clinical Commissioning Group (CCG) so they are able to ensure that the activity claimed for each patient is their responsibility. This is done by processing and analysing Secondary User Services (SUS+) data, which is received into a secure Controlled Environment for Finance (CEfF). The SUS+ data is identifiable at the level of NHS number. The NHS number is only used to confirm the accuracy of backing-data sets and will not be used further. Invoice Validation with be conducted by NHS Arden and Greater East Midlands Commissioning Support Unit. The CCG are advised by NHS Arden and Greater East Midlands Commissioning Support Unit whether payment for invoices can be made or not. Risk Stratification Risk stratification is a tool for identifying and predicting which patients are at high risk or are likely to be at high risk and prioritising the management of their care in order to prevent worse outcomes. To conduct risk stratification Secondary User Services (SUS+) data, identifiable at the level of NHS number is linked with Primary Care data (from GPs) and an algorithm is applied to produce risk scores. Risk Stratification provides focus for future demands by enabling commissioners to prepare plans for patients. Commissioners can then prepare plans for patients who may require high levels of care. Risk Stratification also enables General Practitioners (GPs) to better target intervention in Primary Care. Risk Stratification will be conducted by NHS Midlands and Lancashire Commissioning Support Unit. Commissioning To use pseudonymised data to provide intelligence to support the commissioning of health services. The data (containing both clinical and financial information) is analysed so that health care provision can be planned to support the needs of the population within the CCG area. The CCGs commission services from a range of providers covering a wide array of services. Each of the data flow categories requested supports the commissioned activity of one or more providers. The following pseudonymised datasets are required to provide intelligence to support commissioning of health services: - Secondary Uses Service (SUS+) - Local Provider Flows o Acute o Ambulance o Community o Demand for Service o Diagnostic Service o Emergency Care o Experience, Quality and Outcomes o Mental Health o Other Not Elsewhere Classified o Population Data o Primary Care Services o Public Health Screening - Mental Health Minimum Data Set (MHMDS) - Mental Health Learning Disability Data Set (MHLDDS) - Mental Health Services Data Set (MHSDS) - Maternity Services Data Set (MSDS) - Improving Access to Psychological Therapy (IAPT) - Child and Young People Health Service (CYPHS) - Diagnostic Imaging Data Set (DIDS) - Community Services Dataset (CSDS) - National Cancer Waiting Times Dataset (NCWT) The pseudonymised data is required to for the following purposes: § Population health management: • Understanding the interdependency of care services • Targeting care more effectively • Using value as the redesign principle § Data Quality and Validation – allowing data quality checks on the submitted data § Thoroughly investigating the needs of the population, to ensure the right services are available for individuals when and where they need them § Understanding cohorts of residents who are at risk of becoming users of some of the more expensive services, to better understand and manage those needs § Monitoring population health and care interactions to understand where people may slip through the net, or where the provision of care may be being duplicated § Modelling activity across all data sets to understand how services interact with each other, and to understand how changes in one service may affect flows through another § Service redesign § Health Needs Assessment – identification of underlying disease prevalence within the local population § Patient stratification and predictive modelling - to identify specific patients at risk of requiring hospital admission and other avoidable factors such as risk of falls, computed using algorithms executed against linked de-identified data, and identification of future service delivery models The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets. Processing for commissioning will be conducted by NHS Midlands and Lancashire Commissioning Support Unit and Arden and GEM Commissioning Support Unit.

Yielded Benefits:

.

Expected Benefits:

Invoice Validation 1. Financial validation of activity 2. CCG Budget control 3. Commissioning and performance management 4. Meeting commissioning objectives without compromising patient confidentiality 5. The avoidance of misappropriation of public funds to ensure the ongoing delivery of patient care Risk Stratification Risk stratification promotes improved case management in primary care and will lead to the following benefits being realised: 1. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these. 2. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services thus allowing early intervention. 3. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required. 4. Supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework by allowing for more targeted intervention in primary care. 5. Better understanding of local population characteristics through analysis of their health and healthcare outcomes All of the above lead to improved patient experience through more effective commissioning of services. Commissioning 1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, integrated care and pathways. a. Analysis to support full business cases. b. Develop business models. c. Monitor In year projects. 2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types. 3. Health economic modelling using: a. Analysis on provider performance against 18 weeks wait targets. b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients. c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway. d. Analysis to understand emergency care and linking A&E and Emergency Urgent Care Flows (EUCC). 4. Commissioning cycle support for grouping and re-costing previous activity. 5. Enables monitoring of: a. CCG outcome indicators. b. Financial and Non-financial validation of activity. c. Successful delivery of integrated care within the CCG. d. Checking frequent or multiple attendances to improve early intervention and avoid admissions. e. Case management. f. Care service planning. g. Commissioning and performance management. h. List size verification by GP practices. i. Understanding the care of patients in nursing homes. 6. Feedback to NHS service providers on data quality at an aggregate and individual record level – only on data initially provided by the service providers. 7. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these. 8. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services and early intervention of appropriate care. 9. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required. 10. Potentially reduced premature mortality by more targeted intervention in primary care, which supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework. 11. Better understanding of the health of and the variations in health outcomes within the population to help understand local population characteristics. 12. Better understanding of contract requirements, contract execution, and required services for management of existing contracts, and to assist with identification and planning of future contracts 13. Insights into patient outcomes, and identification of the possible efficacy of outcomes-based contracting opportunities.

Outputs:

Invoice Validation 1. Addressing poor data quality issues 2. Production of reports for business intelligence 3. Budget reporting 4. Validation of invoices for non-contracted events Risk Stratification 1. As part of the risk stratification processing activity detailed above, GPs have access to the risk stratification tool which highlights patients for whom the GP is responsible and have been classed as at risk. The only identifier available to GPs is the NHS numbers of their own patients. Any further identification of the patients will be completed by the GP on their own systems. 2. Output from the risk stratification tool will provide aggregate reporting of number and percentage of population found to be at risk. 3. Record level output will be available for commissioners (of the CCG), pseudonymised at patient level. 4. GP Practices will be able to view the risk scores for individual patients with the ability to display the underlying SUS+ data for the individual patients when it is required for direct care purposes by someone who has a legitimate relationship with the patient. 5. The CCG will be able to target specific patient groups and enable clinicians with the duty of care for the patient to offer appropriate interventions. The CCG will also be able to: o Stratify populations based on: disease profiles; conditions currently being treated; current service use; pharmacy use and risk of future overall cost o Plan work for commissioning services and contracts o Set up capitated budgets o Identify health determinants of risk of admission to hospital, or other adverse care outcomes. Commissioning 1. Commissioner reporting: a. Summary by provider view - plan & actuals year to date (YTD). b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD. c. Summary by provider view - activity & finance variance by POD. d. Planned care by provider view - activity & finance plan & actuals YTD. e. Planned care by POD view - activity plan & actuals YTD. f. Provider reporting. g. Statutory returns. h. Statutory returns - monthly activity return. i. Statutory returns - quarterly activity return. j. Delayed discharges. k. Quality & performance referral to treatment reporting. 2. Readmissions analysis. 3. Production of aggregate reports for CCG Business Intelligence. 4. Production of project / programme level dashboards. 5. Monitoring of acute / community / mental health quality matrix. 6. Clinical coding reviews / audits. 7. Budget reporting down to individual GP Practice level. 8. GP Practice level dashboard reports include high flyers. 9. Comparators of CCG performance with similar CCGs as set out by a specific range of care quality and performance measures detailed activity and cost reports 10. Data Quality and Validation measures allowing data quality checks on the submitted data 11. Contract Management and Modelling 12. Patient Stratification, such as: o Patients at highest risk of admission o Most expensive patients (top 15%) o Frail and elderly o Patients that are currently in hospital o Patients with most referrals to secondary care o Patients with most emergency activity o Patients with most expensive prescriptions o Patients recently moving from one care setting to another i. Discharged from hospital ii. Discharged from community

Processing:

Data must only be used as stipulated within this Data Sharing Agreement. Data Processors must only act upon specific instructions from the Data Controller. Data can only be stored at the addresses listed under storage addresses. Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data. All access to data is managed under Roles-Based Access Controls No patient level data will be linked other than as specifically detailed within this agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality and that data required by the applicant. NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data) The DSCRO (part of NHS Digital) will apply Type 2 objections before any identifiable data leaves the DSCRO only for the purpose of Risk Stratification. CCGs should work with general practices within their CCG to help them fulfil data controller responsibilities regarding flow of identifiable data into risk stratification tools. Segregation Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked. All access to data is auditable by NHS Digital. Data for the purpose of Invoice Validation is kept within the CEfF, and only used by staff properly trained and authorised for the activity. Only CEfF staff are able to access data in the CEfF and only CEfF staff operate the invoice validation process within the CEfF. Data flows directly in to the CEfF from the DSCRO and from the providers – it does not flow through any other processors. Invoice Validation - NHS Arden and Greater East Midlands Commissioning Support Unit (Data Processor) 1. Identifiable SUS+ Data is obtained from the SUS+ Repository to the Data Services for Commissioners Regional Office (DSCRO). 2. The DSCRO pushes a one-way data flow of SUS+ data into the Controlled Environment for Finance (CEfF) in the NHS Arden and Greater East Midlands Commissioning Support Unit. 3. NHS Arden and Greater East Midlands Commissioning Support Unit carry out the following processing activities within the CEfF for invoice validation purposes: a. Validating that the Clinical Commissioning Group is responsible for payment for the care of the individual by using SUS+ and/or backing flow data. b. Once the backing information is received, this will be checked against national NHS and local commissioning policies as well as being checked against system access and reports provided by NHS Digital to confirm the payments are: i. In line with Payment by Results tariffs ii. are in relation to a patient registered with a CCG GP or resident within the CCG area. iii. The health care provided should be paid by the CCG in line with CCG guidance.  4. The CCG are notified that the invoice has been validated and can be paid. Any discrepancies or non-validated invoices are investigated and resolved between NHS Arden and Greater East Midlands Commissioning Support Unit CEfF team and the provider meaning that no identifiable data needs to be sent to the CCG. The CCG only receives notification to pay and management reporting detailing the total quantum of invoices received pending, processed etc. Risk Stratification - NHS Midlands and Lancashire Commissioning Support Unit (Data Processor) 1. Identifiable SUS+ data is obtained from the SUS Repository to the Data Services for Commissioners Regional Office (DSCRO). 2. Data quality management and standardisation of data is completed by the DSCRO and the data identifiable at the level of NHS number is transferred securely to NHS Midlands and Lancashire Commissioning Support Unit, who hold the SUS+ data within the secure Data Centre on N3. 3. Identifiable GP Data is securely sent from the GP system to NHS Midlands and Lancashire Commissioning Support Unit. 4. SUS+ data is linked to GP data in the risk stratification tool by the data processor. 5. As part of the risk stratification processing activity, GPs have access to the risk stratification tool within the data processor, which highlights patients with whom the GP has a legitimate relationship and have been classed as at risk. The only identifier available to GPs is the NHS numbers of their own patients. Any further identification of the patients will be completed by the GP on their own systems. 6. Once NHS Midlands and Lancashire Commissioning Support Unit has completed the processing, the CCG can access the online system via a secure connection to access the data pseudonymised at patient level. Commissioning The Data Services for Commissioners Regional Office (DSCRO) obtains the following data sets: 1. SUS+ 2. Local Provider Flows (received directly from providers) a. Acute b. Ambulance c. Community d. Demand for Service e. Diagnostic Service f. Emergency Care g. Experience, Quality and Outcomes h. Mental Health i. Other Not Elsewhere Classified j. Population Data k. Primary Care Services l. Public Health Screening 3. Mental Health Minimum Data Set (MHMDS) 4. Mental Health Learning Disability Data Set (MHLDDS) 5. Mental Health Services Data Set (MHSDS) 6. Maternity Services Data Set (MSDS) 7. Improving Access to Psychological Therapy (IAPT) 8. Child and Young People Health Service (CYPHS) 9. Community Services Data Set (CSDS) 10. Diagnostic Imaging Data Set (DIDS) 11. National Cancer Waiting Times Monitoring Data Set (CWT) Data quality management and pseudonymisation is completed within the DSCRO and is then disseminated as follows: Data Processor 1 – NHS Midlands and Lancashire Commissioning Support Unit 1. Pseudonymised SUS+, Local Provider data, Mental Health data (MHSDS, MHMDS, MHLDDS), Maternity data (MSDS), Improving Access to Psychological Therapies data (IAPT), Child and Young People’s Health data (CYPHS), Diagnostic Imaging data (DIDS) Community Services Dataset (CSDS) and National Cancer Waiting Times (CWT) only is securely transferred from the DSCRO to NHS Midlands and Lancashire Commissioning Support Unit. 2. NHS Midlands and Lancashire Commissioning Support Unitadd derived fields, link data and provide analysis to: a. See patient journeys for pathways or service design, re-design and de-commissioning. b. Check recorded activity against contracts or invoices and facilitate discussions with providers. c. Undertake population health management d. Undertake data quality and validation checks e. Thoroughly investigate the needs of the population f. Understand cohorts of residents who are at risk g. Conduct Health Needs Assessments 3. Allowed linkage is between the data sets contained within point 1. 4. NHS Midlands and Lancashire Commissioning Support Unit then pass the processed, pseudonymised and linked data to the CCG. 5. Aggregation of required data for CCG management use will be completed by NHS Midlands and Lancashire Commissioning Support Unit or the CCG as instructed by the CCG. 6. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set. Data Processor 2 – Arden and GEM Commissioning Support Unit 1. Pseudonymised SUS+, Local Provider data, Mental Health data (MHSDS, MHMDS, MHLDDS), Maternity data (MSDS), Improving Access to Psychological Therapies data (IAPT), Child and Young People’s Health data (CYPHS), Diagnostic Imaging data (DIDS) Community Services Dataset (CSDS) and National Cancer Waiting Times (NCWT) only is securely transferred from the DSCRO to NHS Arden and GEM Commissioning Support Unit. 2. NHS Arden and GEM Commissioning Support Unit add derived fields, link data and provide analysis to: a. See patient journeys for pathways or service design, re-design and de-commissioning. b. Check recorded activity against contracts or invoices and facilitate discussions with providers. c. Undertake population health management d. Undertake data quality and validation checks e. Thoroughly investigate the needs of the population f. Understand cohorts of residents who are at risk g. Conduct Health Needs Assessments 3. Allowed linkage is between the data sets contained within point 1. 4. NHS Arden and GEM Commissioning Support Unit then pass the processed, pseudonymised and linked data to the CCG. 5. Aggregation of required data for CCG management use will be completed by NHS Arden and GEM Commissioning Support Unit or the CCG as instructed by the CCG. 6. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set.


Project 6 — DARS-NIC-41104-C0Y4K

Opt outs honoured: N, Y, No - data flow is not identifiable, Yes - patient objections upheld (Section 251, Mixture of confidential data flow(s) with support under section 251 NHS Act 2006 and non-confidential data flow(s))

Sensitive: Sensitive

When: 2018/06 — 2021/03.

Repeats: Frequent adhoc flow, Frequent Adhoc Flow, One-Off

Legal basis: Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Section 251 approval is in place for the flow of identifiable data, National Health Service Act 2006 - s251 - 'Control of patient information'.

Categories: Anonymised - ICO code compliant, Identifiable

Datasets:

  • Acute-Local Provider Flows
  • Ambulance-Local Provider Flows
  • Children and Young People Health
  • Community-Local Provider Flows
  • Demand for Service-Local Provider Flows
  • Diagnostic Imaging Dataset
  • Diagnostic Services-Local Provider Flows
  • Emergency Care-Local Provider Flows
  • Experience, Quality and Outcomes-Local Provider Flows
  • Improving Access to Psychological Therapies Data Set
  • Maternity Services Data Set
  • Mental Health and Learning Disabilities Data Set
  • Mental Health Minimum Data Set
  • Mental Health Services Data Set
  • Mental Health-Local Provider Flows
  • Other Not Elsewhere Classified (NEC)-Local Provider Flows
  • Population Data-Local Provider Flows
  • Primary Care Services-Local Provider Flows
  • Public Health and Screening Services-Local Provider Flows
  • SUS for Commissioners
  • Community Services Data Set
  • National Cancer Waiting Times Monitoring DataSet (CWT)
  • Civil Registration - Births
  • Civil Registration - Deaths
  • National Diabetes Audit
  • Patient Reported Outcome Measures

Objectives:

Invoice Validation Invoice validation is part of a process by which providers of care or services get paid for the work they do. Invoices are submitted to the Clinical Commissioning Group (CCG) so they are able to ensure that the activity claimed for each patient is their responsibility. This is done by processing and analysing Secondary User Services (SUS+) data, which is received into a secure Controlled Environment for Finance (CEfF). The SUS+ data is identifiable at the level of NHS number. The NHS number is only used to confirm the accuracy of backing-data sets and will not be used further. The legal basis for this to occur is under Section 251 of NHS Act 2006. Invoice Validation with be conducted by Midlands and Lancashire Commissioning Support Unit. The CCG are advised by Midlands and Lancashire Commissioning Support Unit whether payment for invoices can be made or not. Risk Stratification Risk stratification is a tool for identifying and predicting which patients are at high risk or are likely to be at high risk and prioritising the management of their care in order to prevent worse outcomes. To conduct risk stratification Secondary User Services (SUS+) data, identifiable at the level of NHS number is linked with Primary Care data (from GPs) and an algorithm is applied to produce risk scores. Risk Stratification provides focus for future demands by enabling commissioners to prepare plans for patients. Commissioners can then prepare plans for patients who may require high levels of care. Risk Stratification also enables General Practitioners (GPs) to better target intervention in Primary Care. The legal basis for this to occur is under Section 251 of NHS Act 2006 (CAG 7-04(a)). Risk Stratification will be conducted by Midlands and Lancashire Commissioning Support Unit. Commissioning To use pseudonymised data to provide intelligence to support the commissioning of health services. The data (containing both clinical and financial information) is analysed so that health care provision can be planned to support the needs of the population within the CCG area. The CCGs commission services from a range of providers covering a wide array of services. Each of the data flow categories requested supports the commissioned activity of one or more providers. The following pseudonymised datasets are required to provide intelligence to support commissioning of health services: - Secondary Uses Service (SUS+) - Local Provider Flows o Acute o Ambulance o Community o Demand for Service o Diagnostic Service o Emergency Care o Experience, Quality and Outcomes o Mental Health o Other Not Elsewhere Classified o Population Data o Primary Care Services o Public Health Screening - Mental Health Minimum Data Set (MHMDS) - Mental Health Learning Disability Data Set (MHLDDS) - Mental Health Services Data Set (MHSDS) - Maternity Services Data Set (MSDS) - Improving Access to Psychological Therapy (IAPT) - Child and Young People Health Service (CYPHS) - Diagnostic Imaging Data Set (DIDS) The pseudonymised data is required to for the following purposes: § Population health management: • Understanding the interdependency of care services • Targeting care more effectively • Using value as the redesign principle § Data Quality and Validation – allowing data quality checks on the submitted data § Thoroughly investigating the needs of the population, to ensure the right services are available for individuals when and where they need them § Understanding cohorts of residents who are at risk of becoming users of some of the more expensive services, to better understand and manage those needs § Monitoring population health and care interactions to understand where people may slip through the net, or where the provision of care may be being duplicated § Modelling activity across all data sets to understand how services interact with each other, and to understand how changes in one service may affect flows through another § Service redesign § Health Needs Assessment – identification of underlying disease prevalence within the local population § Patient stratification and predictive modelling - to identify specific patients at risk of requiring hospital admission and other avoidable factors such as risk of falls, computed using algorithms executed against linked de-identified data, and identification of future service delivery models The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets. Processing for commissioning will be conducted by Midlands and Lancashire Commissioning Support Unit.

Yielded Benefits:

N/A

Expected Benefits:

Invoice Validation 1. Financial validation of activity 2. CCG Budget control 3. Commissioning and performance management 4. Meeting commissioning objectives without compromising patient confidentiality 5. The avoidance of misappropriation of public funds to ensure the ongoing delivery of patient care Risk Stratification Risk stratification promotes improved case management in primary care and will lead to the following benefits being realised: 1. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these. 2. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services thus allowing early intervention. 3. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required. 4. Supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework by allowing for more targeted intervention in primary care. 5. Better understanding of local population characteristics through analysis of their health and healthcare outcomes All of the above lead to improved patient experience through more effective commissioning of services. Commissioning 1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, integrated care and pathways. a. Analysis to support full business cases. b. Develop business models. c. Monitor In year projects. 2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types. 3. Health economic modelling using: a. Analysis on provider performance against 18 weeks wait targets. b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients. c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway. d. Analysis to understand emergency care and linking A&E and Emergency Urgent Care Flows (EUCC). 4. Commissioning cycle support for grouping and re-costing previous activity. 5. Enables monitoring of: a. CCG outcome indicators. b. Financial and Non-financial validation of activity. c. Successful delivery of integrated care within the CCG. d. Checking frequent or multiple attendances to improve early intervention and avoid admissions. e. Case management. f. Care service planning. g. Commissioning and performance management. h. List size verification by GP practices. i. Understanding the care of patients in nursing homes. 6. Feedback to NHS service providers on data quality at an aggregate and individual record level – only on data initially provided by the service providers. 7. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these. 8. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services and early intervention of appropriate care. 9. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required. 10. Potentially reduced premature mortality by more targeted intervention in primary care, which supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework. 11. Better understanding of the health of and the variations in health outcomes within the population to help understand local population characteristics. 12. Better understanding of contract requirements, contract execution, and required services for management of existing contracts, and to assist with identification and planning of future contracts 13. Insights into patient outcomes, and identification of the possible efficacy of outcomes-based contracting opportunities.

Outputs:

Invoice Validation 1. Addressing poor data quality issues 2. Production of reports for business intelligence 3. Budget reporting 4. Validation of invoices for non-contracted events Risk Stratification 1. As part of the risk stratification processing activity detailed above, GPs have access to the risk stratification tool which highlights patients for whom the GP is responsible and have been classed as at risk. The only identifier available to GPs is the NHS numbers of their own patients. Any further identification of the patients will be completed by the GP on their own systems. 2. Output from the risk stratification tool will provide aggregate reporting of number and percentage of population found to be at risk. 3. Record level output will be available for commissioners (of the CCG), pseudonymised at patient level. 4. GP Practices will be able to view the risk scores for individual patients with the ability to display the underlying SUS+ data for the individual patients when it is required for direct care purposes by someone who has a legitimate relationship with the patient. 5. The CCG will be able to target specific patient groups and enable clinicians with the duty of care for the patient to offer appropriate interventions. The CCG will also be able to: o Stratify populations based on: disease profiles; conditions currently being treated; current service use; pharmacy use and risk of future overall cost o Plan work for commissioning services and contracts o Set up capitated budgets o Identify health determinants of risk of admission to hospital, or other adverse care outcomes. Commissioning 1. Commissioner reporting: a. Summary by provider view - plan & actuals year to date (YTD). b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD. c. Summary by provider view - activity & finance variance by POD. d. Planned care by provider view - activity & finance plan & actuals YTD. e. Planned care by POD view - activity plan & actuals YTD. f. Provider reporting. g. Statutory returns. h. Statutory returns - monthly activity return. i. Statutory returns - quarterly activity return. j. Delayed discharges. k. Quality & performance referral to treatment reporting. 2. Readmissions analysis. 3. Production of aggregate reports for CCG Business Intelligence. 4. Production of project / programme level dashboards. 5. Monitoring of acute / community / mental health quality matrix. 6. Clinical coding reviews / audits. 7. Budget reporting down to individual GP Practice level. 8. GP Practice level dashboard reports include high flyers. 9. Comparators of CCG performance with similar CCGs as set out by a specific range of care quality and performance measures detailed activity and cost reports 10. Data Quality and Validation measures allowing data quality checks on the submitted data 11. Contract Management and Modelling 12. Patient Stratification, such as: o Patients at highest risk of admission o Most expensive patients (top 15%) o Frail and elderly o Patients that are currently in hospital o Patients with most referrals to secondary care o Patients with most emergency activity o Patients with most expensive prescriptions o Patients recently moving from one care setting to another i. Discharged from hospital ii. Discharged from community

Processing:

Data must only be used as stipulated within this Data Sharing Agreement. Data Processors must only act upon specific instructions from the Data Controller. Data can only be stored at the addresses listed under storage addresses. The Data Controller and any Data Processor will only have access to records of patients of residence and registration within the CCG. Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data. All access to data is managed under Roles-Based Access Controls No patient level data will be linked other than as specifically detailed within this agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality and that data required by the applicant. NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data) The DSCRO (part of NHS Digital) will apply Type 2 objections before any identifiable data leaves the DSCRO. CCGs should work with general practices within their CCG to help them fulfil data controller responsibilities regarding flow of identifiable data into risk stratification tools. Segregation Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked. All access to data is auditable by NHS Digital. Data for the purpose of Invoice Validation is kept within the CEfF, and only used by staff properly trained and authorised for the activity. Only CEfF staff are able to access data in the CEfF and only CEfF staff operate the invoice validation process within the CEfF. Data flows directly in to the CEfF from the DSCRO and from the providers – it does not flow through any other processors. Invoice Validation 1. Identifiable SUS+ Data is obtained from the SUS+ Repository to the Data Services for Commissioners Regional Office (DSCRO). 2. The DSCRO pushes a one-way data flow of SUS+ data into the Controlled Environment for Finance (CEfF) in the Midlands and Lancashire Commissioning Support Unit. 3. The CSU carry out the following processing activities within the CEfF for invoice validation purposes: a. Validating that the Clinical Commissioning Group is responsible for payment for the care of the individual by using SUS+ and/or backing flow data. b. Once the backing information is received, this will be checked against national NHS and local commissioning policies as well as being checked against system access and reports provided by NHS Digital to confirm the payments are: i. In line with Payment by Results tariffs ii. are in relation to a patient registered with a CCG GP or resident within the CCG area. iii. The health care provided should be paid by the CCG in line with CCG guidance.  4. The CCG are notified that the invoice has been validated and can be paid. Any discrepancies or non-validated invoices are investigated and resolved between Midlands and Lancashire Commissioning Support Unit CEfF team and the provider meaning that no identifiable data needs to be sent to the CCG. The CCG only receives notification to pay and management reporting detailing the total quantum of invoices received pending, processed etc. Risk Stratification 1. Identifiable SUS+ data is obtained from the SUS Repository to the Data Services for Commissioners Regional Office (DSCRO). 2. Data quality management and standardisation of data is completed by the DSCRO and the data identifiable at the level of NHS number is transferred securely to Midlands and Lancashire Commissioning Support Unit, who hold the SUS+ data within the secure Data Centre on N3. 3. Identifiable GP Data is securely sent from the GP system to Midlands and Lancashire Commissioning Support Unit. 4. SUS+ data is linked to GP data in the risk stratification tool by the data processor. 5. As part of the risk stratification processing activity, GPs have access to the risk stratification tool within the data processor, which highlights patients with whom the GP has a legitimate relationship and have been classed as at risk. The only identifier available to GPs is the NHS numbers of their own patients. Any further identification of the patients will be completed by the GP on their own systems. 6. Once Midlands and Lancashire Commissioning Support Unit has completed the processing, the CCG can access the online system via a secure connection to access the data pseudonymised at patient level. Commissioning The Data Services for Commissioners Regional Office (DSCRO) obtains the following data sets: 1. SUS+ 2. Local Provider Flows (received directly from providers) a. Acute b. Ambulance c. Community d. Demand for Service e. Diagnostic Service f. Emergency Care g. Experience, Quality and Outcomes h. Mental Health i. Other Not Elsewhere Classified j. Population Data k. Primary Care Services l. Public Health Screening 3. Mental Health Minimum Data Set (MHMDS) 4. Mental Health Learning Disability Data Set (MHLDDS) 5. Mental Health Services Data Set (MHSDS) 6. Maternity Services Data Set (MSDS) 7. Improving Access to Psychological Therapy (IAPT) 8. Child and Young People Health Service (CYPHS) 9. Diagnostic Imaging Data Set (DIDS) Data quality management and pseudonymisation is completed within the DSCRO and is then disseminated as follows: Data Processor 1 – Midlands and Lancashire Commissioning Support Unit 1. Pseudonymised SUS+, Local Provider data, Mental Health data (MHSDS, MHMDS, MHLDDS), Maternity data (MSDS), Improving Access to Psychological Therapies data (IAPT), Child and Young People’s Health data (CYPHS) and Diagnostic Imaging data (DIDS) only is securely transferred from the DSCRO to Midlands and Lancashire Commissioning Support Unit. 2. Midlands and Lancashire Commissioning Support Unit add derived fields, link data and provide analysis to: a. See patient journeys for pathways or service design, re-design and de-commissioning. b. Check recorded activity against contracts or invoices and facilitate discussions with providers. c. Undertake population health management d. Undertake data quality and validation checks e. Thoroughly investigate the needs of the population f. Understand cohorts of residents who are at risk g. Conduct Health Needs Assessments 3. Allowed linkage is between the data sets contained within point 1. 4. Midlands and Lancashire Commissioning Support Unit then pass the processed, pseudonymised and linked data to the CCG. 5. Aggregation of required data for CCG management use will be completed by Midlands and Lancashire Commissioning Support Unit or the CCG as instructed by the CCG. 6. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set.


Project 7 — DARS-NIC-218988-L5K0G

Opt outs honoured: No - data flow is not identifiable (Does not include the flow of confidential data)

Sensitive: Sensitive

When: 2019/01 — 2021/04.

Repeats: Frequent Adhoc Flow, One-Off

Legal basis: Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Health and Social Care Act 2012 - s261 - 'Other dissemination of information'

Categories: Anonymised - ICO code compliant

Datasets:

  • SUS for Commissioners

Objectives:

Commissioning To use pseudonymised data to provide intelligence to support commissioning of health services. The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets. The CCGs commission services from a range of providers covering a wide array of services. Each of the data flow categories requested supports the commissioned activity of one or more providers. Pseudonymised data will also be used to provide Health and Social Care tools that will support Clinical Commissioning Group and Local Authority in improving integrated working and the delivery of integrated health and social care in order to improve outcomes in ways such as those set out in the Better Care Fund (BCF). Analyses of health and social care activity through population profiling will provide benefits that support care initiatives. It will support identification of areas of improvement, for example reablement, emergency admissions, reduction in length of stay and transfer of care delays. Analysis will assist to: improve integrated health and Social Care; improve outcomes (BCF related); profile the population to support care initiatives; and transfer care delays and reduce length of stay. The analyses will benefit the local health economies by allowing them to baseline their current health and social care provision. They will provide an understanding of the interfaces between health and social care services and the areas that are most amenable to joint commissioning. Linked data can be used to predict the impact of any planned changes and monitor this once implemented. Understanding the baseline of health and care activities will enable the key partners to provide assurance that they have identified the correct areas and services of focus for integrated working and to evidence improvement as initiatives are implemented. Health and Social Care Population Profiling NHS Digital and the Local Government Association are working together to raise the importance of adult social care and support the delivery of person-centred care through digital technology both across councils and with social care providers. To this end the Social Care Digital Innovation Programme is being run by NHS Digital in partnership with the Local Government Association and has been developed to provide funding for local authorities to support innovative uses of digital technology in the design and delivery of adult social care. The work of the Social Care Programme focuses on improving digital maturity and supports the better understanding and use of digital technology across the social care sector. It is intended to support the health and care sectors to share information securely between different systems and to simplify and standardise the information they collect and use. There are many links between the health and care system, such as when someone is discharged from hospital into social care, but it's often difficult for health and care professionals to share information about patients and people accessing services. A range of projects have recently been approved which aim to make transfers of care smoother and safer, improve people’s experience of care, support better care decisions and save care professionals’ time. Purpose and approach The grant funding award to Wolverhampton under the Social Care Digital Innovation Programme will be used to demonstrate how predictive analytics and digital information sharing can improve care and support for people needing social care services. The Wolverhampton project approach is based on a collaborative working between the city council’s Adult Social Care team, NHS Wolverhampton CCG and Predict X*, who have extensive experience in machine learning and predictive analysis. The Machine learning approach uses the study of algorithms and mathematical models that computer systems use to progressively improve their performance on a specific task. Machine learning algorithms build a mathematical model of sample data, known as "training data", in order to make predictions or decisions without being explicitly programmed to perform the task Predictive analytics is a form of advanced analytics that uses both new and historical data to forecast activity, behaviour and trends. It involves applying statistical analysis techniques, analytical queries and automated machine learning algorithms to data sets to create predictive models on the likelihood of a particular event happening in the future. Predictive analytics does not tell you what will happen in the future. It forecasts what might happen in the future with an acceptable level of reliability and includes what-if scenarios and risk assessment. *PredictX is the trading name for PI Limited. PI Limited are a legal entity and are registered with Companies House - company number 01728605. PredictX will be referred to by the legal name PI Limited throughout the Data Sharing Agreement.

Yielded Benefits:

1. A better understanding of pressure points in the existing care system. - Dashboards combining health and social care data show key metrics such as A&E attendances, hospital admissions, hospital discharges, Delayed Transfers of Care (DTOCs) and capacity in care homes. This intelligence has given Wolverhampton City Council a better understanding of how the system can be improved. 2. A machine learning model predicting how many A&E patients end up being admitted to hospital. - City of Wolverhampton Council can use this data to provide best-fitting social care packages for each patient. 3. A new approach to population health involving the creation of care service user profiles to better determine service need in a geographical area. - The work has involved analysing the data of 3,000 users of domiciliary care and showing insight into: - The services they use. - Touchpoints they have with organisations in the system - Socio-Economic data such as indices of deprivation. This work has generated seven key profiles and unearthed an insight - amongst several others - that there are residents with long-term health conditions who do not access many services, whilst there are other residents with no conditions who access multiple services. The richness of data makes it possible to drill down into this further, investigate and re-organise services to address this. The team are now looking to use the insight from the profiles and apply them to real-life situations to see whether they can inform the way that services can be delivered. The commissioning team plan to use the data to better manage the health and care needs of the CCG’s communities to help people stay independent for longer and take pressure off more stretched services.

Expected Benefits:

At the core of the Wolverhampton project is the use of pseudonymised health and social care data to develop predictive models which enable the early identification of adults with complex morbidities. This will help to inform service design and the improvement of intervention and prevention programmes. This programme is designed to support the comments made by James Palmer, Head of the Social Care Programme at NHS Digital who said: “The successful projects span a wide range of areas and give a glimpse into the future of social care.’’ “There is great potential for these projects to be replicated easily to deliver benefits quickly for the system and pave the way for a truly integrated future.’’ ‘’The work on predictive analytics is significant given its potential to support people at earlier stages which may help to reduce the need for long-term social care. Through the use of predictive models that forecast service need and target interventions, we have the chance to help people remain independent, in their own homes, for longer.” Additional benefits include Health and Social Care Population Profiling - Supporting identification of areas of improvement including but not limited to: • Reablement • Emergency admissions • Reduction in length of stay • Transfer of care delays • Supporting the objectives of Wolverhampton LA and Wolverhampton CCG collaboration plan. • Analysis to support full business cases • Develop Business models • Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other support for patients. • Analysis of outcome measures for different treatments, accounting for the patient pathway • Monitoring of outcome indicators • Monitoring financial and non-financial validation of activity • Monitoring of successful delivery of integrated care within the health and care community within Wolverhampton. • Monitoring frequent or multiple attendances to improve early interventions and avoid admissions. • Support Care Service planning • Support improved planning to better understand patient flows through the healthcare system, thus allow supporting organisations to design appropriate pathways to improve patient flow and provide commissioners to identify priorities and identify plans to address identified issues. • Improved quality of services , by providing supportive information to introduce early intervention of appropriate care. • Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required. • Better understanding of the health of and the variations in health outcomes within the population to help understand local population characteristics. • Enables the identification of pressure points in the care and health system • Provides a geographical understanding of service usage • Understanding the baseline of health and care activities will enable the key partners to provide assurance that they have identified the correct areas and services of focus for integrated working and to evidence improvement as initiatives are implemented. • Better understanding of contract requirements, contract execution, and required services for management of existing contracts, and to assist with identification and planning of future contracts

Outputs:

Health and Social Care Population Profiling - Supporting identification of areas of improvement including but not limited to: • Reablement • Emergency admissions • Reduction in length of stay • Transfer of care delays • Baseline of current health and social care provision for local health economies • Understanding Interfaces between health and social care services • Understanding the baseline of health and care activities will enable the key partners to provide assurance that they have identified the correct areas and services of focus for integrated working and to evidence improvement as initiatives are implemented. • See patient journeys for pathway or service design, re-design and de-commissioning • Undertake data quality and validation checks. • Investigate the needs of the population • Understand health needs of residents who are at risk • Conduct Health needs Assessments • The production of joint strategic needs assessments and joint health and well- being strategies. • Planning and delivering effective health services, public health services and social care services.

Processing:

Data must only be used as stipulated within this Data Sharing Agreement. Data Processors must only act upon specific instructions from the Data Controller. Data can only be stored at the addresses listed under storage addresses. Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data. All access to data is managed under Roles-Based Access Controls No patient level data will be linked other than as specifically detailed within this agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality and that data required by the applicant. NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data) Segregation Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked. All access to data is auditable by NHS Digital. Data Minimisation Data Minimisation in relation to the data sets listed within section 3 are listed below. This also includes the purpose on which they would be applied - • Patients who are normally registered and/or resident within the commissioner (including historical activity where the patient was previously registered or resident in another commissioner). and/or • Patients treated by a provider where the commissioner is the host/co-ordinating commissioner and/or has the primary responsibility for the provider services in the local health economy – this is only for commissioning and relates to both national and local flows. and/or • Activity identified by the provider and recorded as such within national systems (such as SUS+) as for the attention of the commissioner - this is only for commissioning and relates to both national and local flows. For clarity, any access by Lima Networks Ltd and Equinix to data held under this agreement would be considered a breach of the agreement. This includes granting of access to the database[s] containing the data. Commissioning The Data Services for Commissioners Regional Office (DSCRO) obtains the following data sets: 1) SUS Data quality management of data is completed by the DSCRO. The SUS data is then pseudonymised using University of Nottingham open pseudonymiser tool - a standalone windows desktop application which creates a digest of one or more columns of a CSV file, using a shared key (SALT file) controlled by the Data Services for Commissioners Regional Office. The DSCRO then disseminated as follows: 1) Pseudonymised SUS, only is securely transferred from the DSCRO to PI Limited via Midlands and Lancashire Commissioning Support Unit which is used as a landing point only due to DSCRO regional processing restrictions. 2) Data quality management of social care data is completed by the Local Authority. The social care data is then pseudonymised using University of Nottingham open pseudonymiser tool. The pseudonymised Social Care Data is then sent to PI Limited direct from the Local Authority via secure FTP 3) The pseudonymisation key cannot be used to re-identify data as the tool does not allow for this to happen, it only allows for one way pseudonymisation. 4) PI Limited then link the data using the common pseudo link, which is undertaken within a controlled environment by a named member of staff, who then produce online reports using CareTrak data analysis tool to provide the CCG and Local authority with a range of high level commissioning intelligence based on integrated pathways of care. 5) Predictive analytics will be applied which is a form of advanced analytics that uses both new and historical data to forecast activity, behavior and trends. It involves applying statistical analysis techniques, analytical queries and automated machine learning algorithms to data sets to create predictive models on the likelihood of a particular event happening in the future. Predictive analytics does not tell you what will happen in the future. It forecasts what might happen in the future with an acceptable level of reliability and includes what-if scenarios and risk assessment. 6) PI Limited send pseudonymised outputs to the Local Authority. 7) PI Limited then aggregate the data and send aggregated reports with small number suppression to the CCG. 8) Patient level data will not be shared outside of PI Limitedor the Local Authority and will only be shared within PI Limited and the Local Authority on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared.