NHS Digital Data Release Register - reformatted

NHS Kent And Medway Icb - 91q projects

20 data files in total were disseminated unsafely (information about files used safely is missing for TRE/"system access" projects).


DSfC - NHS Kent and Medway CCG - IV, Comm — DARS-NIC-362255-K5D1H

Opt outs honoured: No - data flow is not identifiable, Yes - patient objections upheld, No - DSfC for Invoice Validation Purposes, Anonymised - ICO Code Compliant, Identifiable (Mixture of confidential data flow(s) with support under section 251 NHS Act 2006 and non-confidential data flow(s))

Legal basis: Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), National Health Service Act 2006 - s251 - 'Control of patient information'. , Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Health and Social Care Act 2012 – s261(7); National Health Service Act 2006 - s251 - 'Control of patient information'., Health and Social Care Act 2012 - s261 - 'Other dissemination of information', Health and Social Care Act 2012 – s261(2)(b)(ii)

Purposes: No (Clinical Commissioning Group (CCG), Sub ICB Location)

Sensitive: Sensitive

When:DSA runs 2020-04-01 — 2023-03-31 2020.03 — 2021.05.

Access method: Frequent Adhoc Flow, One-Off

Data-controller type: NHS KENT AND MEDWAY CCG, NHS KENT AND MEDWAY ICB - 91Q

Sublicensing allowed: No

Datasets:

  1. Acute-Local Provider Flows
  2. Ambulance-Local Provider Flows
  3. Children and Young People Health
  4. Civil Registration - Births
  5. Civil Registration - Deaths
  6. Community Services Data Set
  7. Community-Local Provider Flows
  8. Demand for Service-Local Provider Flows
  9. Diagnostic Imaging Dataset
  10. Diagnostic Services-Local Provider Flows
  11. Emergency Care-Local Provider Flows
  12. Experience, Quality and Outcomes-Local Provider Flows
  13. Improving Access to Psychological Therapies Data Set
  14. Maternity Services Data Set
  15. Mental Health and Learning Disabilities Data Set
  16. Mental Health Minimum Data Set
  17. Mental Health Services Data Set
  18. Mental Health-Local Provider Flows
  19. National Cancer Waiting Times Monitoring DataSet (CWT)
  20. National Diabetes Audit
  21. Other Not Elsewhere Classified (NEC)-Local Provider Flows
  22. Patient Reported Outcome Measures
  23. Population Data-Local Provider Flows
  24. Primary Care Services-Local Provider Flows
  25. Public Health and Screening Services-Local Provider Flows
  26. SUS for Commissioners
  27. National Cancer Waiting Times Monitoring DataSet (NCWTMDS)
  28. e-Referral Service for Commissioning
  29. Medicines dispensed in Primary Care (NHSBSA data)
  30. Personal Demographic Service
  31. Summary Hospital-level Mortality Indicator
  32. Adult Social Care
  33. Improving Access to Psychological Therapies Data Set_v1.5

Objectives:

INVOICE VALIDATION
Invoice validation is part of a process by which providers of care or services get paid for the work they do.

Invoices are submitted to the Clinical Commissioning Group (CCG) so the CCG is are able to ensure that the activity claimed for each patient is their responsibility. This is done by processing and analysing Secondary User Services (SUS+) data, which is received into a secure Controlled Environment for Finance (CEfF). The SUS+ data is identifiable at the level of NHS number. The NHS number is only used to confirm the accuracy of backing-data sets (data from providers) and will not be used further.

The CCG are advised by the appointed CEfF whether payment for invoices can be made or not.

Invoice Validation will be conducted by Optum Health Solutions and Liaison Financial Services.

Liaison Financial Services Ltd conduct an independent ad-hoc review on retrospective payments made. Investing resource, skills and experience into deeper reconciliation, this identifies overcharges already paid and recovers savings for the CCG that would otherwise be lost.



COMMISSIONING
To use pseudonymised data to provide intelligence to support the commissioning of health services. The data (containing both clinical and financial information) is analysed so that health care provision can be planned to support the needs of the population within the CCG area.

The CCGs commission services from a range of providers covering a wide array of services. Each of the data flow categories requested supports the commissioned activity of one or more providers.

The following pseudonymised datasets are required to provide intelligence to support commissioning of health services:
• Secondary Uses Service (SUS+)
• Local Provider Flows
o Acute
o Ambulance
o Community
o Demand for Service
o Diagnostic Service
o Emergency Care
o Experience, Quality and Outcomes
o Mental Health
o Other Not Elsewhere Classified
o Population Data
o Primary Care Services
o Public Health Screening
• Mental Health Minimum Data Set (MHMDS)
• Mental Health Learning Disability Data Set (MHLDDS)
• Mental Health Services Data Set (MHSDS)
• Maternity Services Data Set (MSDS)
• Improving Access to Psychological Therapy (IAPT)
• Child and Young People Health Service (CYPHS)
• Community Services Data Set (CSDS)
• Diagnostic Imaging Data Set (DIDS)
• National Cancer Waiting Times Monitoring Data Set (CWT)
• Civil Registries Data (CRD) (Births)
• Civil Registries Data (CRD) (Deaths)
• National Diabetes Audit (NDA)
• Patient Reported Outcome Measures (PROMs)

The pseudonymised data is required to for the following purposes:
 Population health management:
• Understanding the interdependency of care services
• Targeting care more effectively
• Using value as the redesign principle
 Data Quality and Validation – allowing data quality checks on the submitted data
 Thoroughly investigating the needs of the population, to ensure the right services are available for individuals when and where they need them
 Understanding cohorts of residents who are at risk of becoming users of some of the more expensive services, to better understand and manage those needs
 Monitoring population health and care interactions to understand where people may slip through the net, or where the provision of care may be being duplicated
 Modelling activity across all data sets to understand how services interact with each other, and to understand how changes in one service may affect flows through another
 Service redesign
 Health Needs Assessment – identification of underlying disease prevalence within the local population
 Patient stratification and predictive modelling - to highlight patients at risk of requiring hospital admission and other avoidable factors such as risk of falls, computed using algorithms executed against linked de-identified data, and identification of future service delivery models

The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets.

Processing for commissioning will be conducted by MedeAnalytics International Limited and Optum Health Solutions

Expected Benefits:

INVOICE VALIDATION
The invoice validation process supports the ongoing delivery of patient care across the NHS and the CCG region by:
1. Ensuring that activity is fully financially validated.
2. Ensuring that service providers are accurately paid for the patients treatment.
3. Enabling services to be planned, commissioned, managed, and subjected to financial control.
4. Enabling commissioners to confirm that they are paying appropriately for treatment of patients for whom they are responsible.
5. Fulfilling commissioners duties to fiscal probity and scrutiny.
6. Ensuring full financial accountability for relevant organisations.
7. Ensuring robust commissioning and performance management.
8. Ensuring commissioning objectives do not compromise patient confidentiality.
9. Ensuring the avoidance of misappropriation of public funds.

INVOICE VALIDATION – Liaison Financial Services Ltd
1. Financial validation of activity
2. CCG Budget control
3. Assurances over the robustness of internal control mechanisms relating to the payment of invoices and/or suggested improvements
4. Identification and recovery of monies which would otherwise be lost
5. Meeting commissioning objectives without compromising patient confidentiality
6. The avoidance of misappropriation of public funds to ensure the ongoing delivery of patient care
7. Benefit delivered 3-9 months from receiving data, depending on number of claims to investigate and resolve



COMMISSIONING
1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, integrated care and pathways.
a. Analysis to support full business cases.
b. Develop business models.
c. Monitor In year projects.
2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types.
3. Health economic modelling using:
a. Analysis on provider performance against 18 weeks wait targets.
b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients.
c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway.
d. Analysis to understand emergency care and linking A&E and Emergency Urgent Care Flows (EUCC).
4. Commissioning cycle support for grouping and re-costing previous activity.
5. Enables monitoring of:
a. CCG outcome indicators.
b. Financial and Non-financial validation of activity.
c. Successful delivery of integrated care within the CCG.
d. Checking frequent or multiple attendances to improve early intervention and avoid admissions.
e. Case management.
f. Care service planning.
g. Commissioning and performance management.
h. List size verification by GP practices.
i. Understanding the care of patients in nursing homes.
6. Feedback to NHS service providers on data quality at an aggregate and individual record level – only on data initially provided by the service providers.
7. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these.
8. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services and early intervention of appropriate care.
9. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required.
10. Potentially reduced premature mortality by more targeted intervention in primary care, which supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework.
11. Better understanding of the health of and the variations in health outcomes within the population to help understand local population characteristics.
12. Better understanding of contract requirements, contract execution, and required services for management of existing contracts, and to assist with identification and planning of future contracts
13. Insights into patient outcomes, and identification of the possible efficacy of outcomes-based contracting opportunities.
14. Providing greater understanding of the underlying courses and look to commission improved supportive networks, this would be ongoing work which would be continually assessed.
15. Insight to understand the numerous factors that play a role in the outcome for both datasets. The linkage will allow the reporting both prior to, during and after the activity, to provide greater assurance on predictive outcomes and delivery of best practice.
16. Provision of indicators of health problems, and patterns of risk within the commissioning region.
17. Support of benchmarking for evaluating progress in future years.

Outputs:

INVOICE VALIDATION
1. The Controlled Environment for Finance (CEfF) will enable the CCG to challenge invoices and raise discrepancies and disputes.
2. Outputs from the CEfF will enable accurate production of budget reports, which will:
a. Assist in addressing poor quality data issues
b. Assist in business intelligence
3. Validation of invoices for non-contracted events where a service delivered to a patient by a provider that does not have a written contract with the patient’s responsible commissioner, but does have a written contract with another NHS commissioner/s.
4. Budget control of the CCG.

INVOICE VALIDATION – Liaison Financial Services Ltd
1. Validation of Continuing Healthcare related invoices and payments
2. Independent Identification of potential overpayments made by the CCG through invoice validation
3. Liaising with providers with a view to recouping these monies
4. Review is completed for the retrospective period from date of contract with Liaison Financial Services back to 01/04/2013.
5. Reviews take 3-9 months depending on number of claims to investigate and resolve
6. Liaison Financial Services would repeat the exercise 2-3 years later
7. CCGs could request reviews to be done more frequently
8. SUS+ would only be requested each time a review was completed, and could be requested at different times as independent reviews


COMMISSIONING
1. Commissioner reporting:
a. Summary by provider view - plan & actuals year to date (YTD).
b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD.
c. Summary by provider view - activity & finance variance by POD.
d. Planned care by provider view - activity & finance plan & actuals YTD.
e. Planned care by POD view - activity plan & actuals YTD.
f. Provider reporting.
g. Statutory returns.
h. Statutory returns - monthly activity return.
i. Statutory returns - quarterly activity return.
j. Delayed discharges.
k. Quality & performance referral to treatment reporting.
2. Readmissions analysis.
3. Production of aggregate reports for CCG Business Intelligence.
4. Production of project / programme level dashboards.
5. Monitoring of acute / community / mental health quality matrix.
6. Clinical coding reviews / audits.
7. Budget reporting down to individual GP Practice level.
8. GP Practice level dashboard reports.
9. Comparators of CCG performance with similar CCGs as set out by a specific range of care quality and performance measures detailed activity and cost reports
10. Data Quality and Validation measures allowing data quality checks on the submitted data
11. Contract Management and Modelling
12. Patient Stratification, such as:
o Patients at highest risk of admission
o High cost activity uses (top 15%)
o Frail and elderly
o Patients that are currently in hospital
o Patients with most referrals to secondary care
o Patients with most emergency activity
o Patients with most expensive prescriptions
o Patients recently moving from one care setting to another
i. Discharged from hospital
ii. Discharged from community
13. Validation for payment approval, ability to validate that claims are not being made after an individual has died, like Oxygen services.
14. Validation of programs implemented to improve patient pathway e.g. High users unable to validate if the process to help patients find the best support are working or did the patient die.
15. Clinical - understand reasons why patients are dying, what additional support services can be put in to support.
16. Understanding where patient are dying e.g. are patients dying at hospitals due to hospices closing due to Local authorities withdrawing support, or is there a problem at a particular trust.
17. Removal of patients from Risk Stratification reports.
18. Re births provide a one stop shop of information, Births are recorded in multiple sources covering hospital and home births, a chance to overlook activity.

Processing:

PROCESSING CONDITIONS:
Data must only be used for the purposes stipulated within this Data Sharing Agreement. Any additional disclosure / publication will require further approval from NHS Digital.

Data Processors must only act upon specific instructions from the Data Controller.

Data can only be stored at the addresses listed under storage addresses.

All access to data is managed under Role-Based Access Controls. Users can only access data authorised by their role and the tasks that they are required to undertake.

Patient level data will not be linked other than as specifically detailed within this Data Sharing Agreement. Data released will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement.

NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data)


ONWARD SHARING:
Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data.

Aggregated reports only with small number suppression can be shared externally as set out within NHS Digital guidance applicable to each data set.


SEGREGATION:
Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked.

Where the Data Processor and/or the Data Controller hold identifiable data with opt outs applied and identifiable data with opt outs not applied, the data will be held separately so data cannot be linked.

All access to data is auditable by NHS Digital.

Data for the purpose of Invoice Validation is kept within the CEfF, and only used by staff properly trained and authorised for the activity. Only CEfF staff are able to access data in the CEfF and only CEfF staff operate the invoice validation process within the CEfF. Data flows directly in to the CEfF from the DSCRO and from the providers – it does not flow through any other processors.


DATA MINIMISATION:
Data Minimisation in relation to the data sets listed within the application are listed below. This also includes the purpose on which they would be applied -

For the purpose of Commissioning:
•Patients who are normally registered and/or resident within the NHS Kent and Medway CCG region (including historical activity where the patient was previously registered or resident in another commissioner).
and/or
•Patients treated by a provider where NHS Kent and Medway CCG is the host/co-ordinating commissioner and/or has the primary responsibility for the provider services in the local health economy – this is only for commissioning and relates to both national and local flows.
and/or
•Activity identified by the provider and recorded as such within national systems (such as SUS+) as for the attention of NHS Kent and Medway CCG - this is only for commissioning and relates to both national and local flows.

For the purpose of Invoice Validation:
•Patients who are resident and/or registered within the CCG region.

This includes data that was previously under a different organisation name but has now merged into this CCG

In addition to the dissemination of Cancer Waiting Times Data via the DSCRO, the CCG is able to access reports held within the CWT system in NHS Digital directly. Access within the CCG is limited to those with a need to process the data for the purposes described in this agreement.

A CCG user will be able to access the provider extracts from the portal for any provider where at least 1 patient for whom they are the registered CCG for that individuals GP practice appears in that setting

Although a CCG user may have access to pseudonymised patient information not related to that CCG, users should only process and analyse data for which they have a legitimate relationship (as described within Data Minimisation).

Microsoft UK supply IT infrastructure and are therefore listed as a data processor. They supply support to the system, but do not access data. Therefore, any access to the data held under this agreement would be considered a breach of the agreement. This includes granting of access to the database[s] containing the data.

SunGard Availability Services, Dover District Council, Virtus and Daisy Group do not access data held under this agreement as they only supply the building. Therefore, any access to the data held under this agreement would be considered a breach of the agreement. This includes granting of access to the database[s] containing the data.

INVOICE VALIDATION - Optum Health Solutions
1. Identifiable SUS+ Data is obtained from the SUS+ Repository to the Data Services for Commissioners Regional Office (DSCRO).
2. The DSCRO pushes a one-way data flow of SUS+ data into the Controlled Environment for Finance (CEfF) in Optum Health Solutions.
3. The CEfF also receive backing data from the provider.
4. Optum Health Solutions carry out the following processing activities within the CEfF for invoice validation purposes:
a. Validating that the Clinical Commissioning Group are responsible for payment for the care of the individual by using SUS+ and/or provider backing flow data.
b. Once the provider backing information is received, this will be checked against national NHS and local commissioning policies as well as being checked against system access and reports provided by NHS Digital to confirm the payments are:
i. In line with Payment by Results tariffs
ii. are in relation to a patient registered with a CCG GP or resident within the CCG area.
iii. The health care provided should be paid by the CCG in line with CCG guidance. 
5. The CCG are notified that the invoice has been validated and can be paid. Any discrepancies or non-validated invoices are investigated and resolved between Optum Health Solutions CEfF team and the provider, meaning that no identifiable data needs to be sent to the CCG. The CCG only receives notification to pay and management reporting detailing the total quantum of invoices received pending, processed etc.


INVOICE VALIDATION - Liaison Financial Services Ltd
1. Identifiable SUS+ Data is obtained from the SUS+ Repository to the Data Services for Commissioners Regional Office (DSCRO).
2. The DSCRO pushes a one-way data flow of SUS+ data into the Controlled Environment for Finance (CEfF) in the Liaison Financial Services Ltd.
3. The CEfF also receive backing data from the provider.
4. Liaison Financial Services Ltd carry out the following processing activities within the CEfF for invoice validation purposes:
a. Validating that the Clinical Commissioning Group are responsible for payment for the care of the individual by using SUS+ and/or provider backing flow data.
b. Once the provider backing information is received, this will be checked against national NHS and local commissioning policies as well as being checked against system access and reports provided by NHS Digital to confirm the payments are:
i. In line with Payment by Results tariffs
ii. are in relation to a patient registered with a CCG GP or resident within the CCG area.
iii. The health care provided should be paid by the CCG in line with CCG guidance. 
5. The CCG are notified that the invoice has been validated and can be paid. Any discrepancies or non-validated invoices are investigated and resolved between Liaison Financial Services Ltd CEfF team and the provider, meaning that no identifiable data needs to be sent to the CCG. The CCG only receives notification to pay and management reporting detailing the total quantum of invoices received pending, processed etc.


COMMISSIONING
The Data Services for Commissioners Regional Office (DSCRO) obtains the following data sets:
1. SUS+
2. Local Provider Flows (received directly from providers)
a. Acute
b. Ambulance
c. Community
d. Demand for Service
e. Diagnostic Service
f. Emergency Care
g. Experience, Quality and Outcomes
h. Mental Health
i. Other Not Elsewhere Classified
j. Population Data
k. Primary Care Services
l. Public Health Screening
3. Mental Health Minimum Data Set (MHMDS)
4. Mental Health Learning Disability Data Set (MHLDDS)
5. Mental Health Services Data Set (MHSDS)
6. Maternity Services Data Set (MSDS)
7. Improving Access to Psychological Therapy (IAPT)
8. Child and Young People Health Service (CYPHS)
9. Community Services Data Set (CSDS)
10. Diagnostic Imaging Data Set (DIDS)
11. National Cancer Waiting Times Monitoring Data Set (CWT)
12. Civil Registries Data (CRD) (Births)
13. Civil Registries Data (CRD) (Deaths)
14. National Diabetes Audit (NDA)
15. Patient Reported Outcome Measures (PROMs)

Data Processor 1 – MedeAnalytics

Data quality management and pseudonymisation is completed within the DSCRO using the MedeAnalytics tool specific to the CCG and is then disseminated as follows:
1) Pseudonymised SUS+, Local Provider data, Mental Health data (MHSDS, MHMDS, MHLDDS), Maternity data (MSDS), Improving Access to Psychological Therapies data (IAPT), Child and Young People’s Health data (CYPHS), Community Services Data Set (CSDS), Diagnostic Imaging data (DIDS), National Cancer Waiting Times Monitoring Data Set (CWT), Civil Registries Data (CRD) (Births and Deaths), National Diabetes Audit (NDA) and Patient Reported Outcome Measures (PROMs) only is securely transferred from the DSCRO to MedeAnalytics.
2) MedeAnalytics also receives the following pseudonymised data from providers that has been pseudonymised at source using the MedeAnalytics pseudonymisation tool:
o Community Data
o Mental Health Data
o Social Care Data
o GP Data
o Any Qualified Provider data
3) MedeAnalytics add derived fields, link data and provide analysis to:
o See patient journeys for pathways or service design, re-design and de-commissioning
o Check recorded activity against contracts or invoices and facilitate discussions with providers
o Undertake population health management
o Undertake data quality and validation checks
o Thoroughly investigate the needs of the population
o Understand cohorts of residents who are at risk
o Conduct Health Needs Assessments
4) Allowed linkage is between the data sets contained within point 1 and point 2 only.
5) MedeAnalytics then pass the processed, pseudonymised and linked data to the CCG.
6) Aggregation of required data for CCG management use will be completed by MedeAnalytics or the CCG as instructed by the CCG.
7) Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set.
8) MedeAnalytics also pass pseudonymised SUS+ and GP data to Optum Health Solutions.

Data Processor 2 – Optum Health Solutions
9) Optum Health Solutions provide analysis to
o Data integration
o Undertake population health management
10) Aggregation of data is completed by Optum Health Solutions.
11) Patient level data will not be shared outside of Optum Health Solutions and will only be shared within Optum Health Solutions on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set

For clarity: Optum require data for more transformational Public Health facing tools such as Health Population Manager whereas MedeAnalytics will be dealing with the day to day more transactional (SUS, SLAM, MH, Community…) data feeds required for contracting and commissioning purposes.

MedeAnalytics outputs only (Direct Care only)
Re-identification (managed under RBAC) requires an additional step to access re-identification keys held by an independent third party key management service that has no access to the data. Disabling a user’s account in the key management system immediately removes the ability of that user to access re-identification keys.

Each Re-identification requires a different key, so inappropriate retention of keys (which is neither allowed, nor easy to accomplish by design) will not result in compromise of data
Only GP Practice users are able to re-identify patients and only when they have a legitimate reason and a legal right to re-identify, and can only access data to which they have rights under RBAC (which is CG/SIRO approved – within the CCG)

All data providers for a particular region (according to contract) are issued with encryption keys that ensure data for their region can only be linked to data from other providers for the same region. This means that data for two different regional customers cannot be accidentally mixed.


DSfC - NHS Medway CCG - RS — DARS-NIC-226603-C7K2R

Opt outs honoured: Yes - patient objections upheld, Identifiable (Section 251, Section 251 NHS Act 2006)

Legal basis: National Health Service Act 2006 - s251 - 'Control of patient information'. , Health and Social Care Act 2012 – s261(7); National Health Service Act 2006 - s251 - 'Control of patient information'.

Purposes: No (Clinical Commissioning Group (CCG), Sub ICB Location)

Sensitive: Sensitive

When:DSA runs 2019-09-01 — 2022-08-31 2018.10 — 2020.03.

Access method: Frequent Adhoc Flow

Data-controller type: NHS KENT AND MEDWAY CCG, NHS KENT AND MEDWAY ICB - 91Q

Sublicensing allowed: No

Datasets:

  1. SUS for Commissioners

Objectives:

Risk stratification is a tool for identifying and predicting which patients are at high risk or are likely to be at high risk and prioritising the management of their care in order to prevent worse outcomes.
To conduct risk stratification Secondary User Services (SUS+) data, identifiable at the level of NHS number is linked with Primary Care data (from GPs) and an algorithm is applied to produce risk scores. Risk Stratification provides focus for future demands by enabling commissioners to prepare plans for patients. Commissioners can then prepare plans for patients who may require high levels of care. Risk Stratification also enables General Practitioners (GPs) to better target intervention in Primary Care.

Risk Stratification will be conducted by Prescribing Services Limited

Yielded Benefits:

Expected Benefits:

Risk stratification promotes improved case management in primary care and will lead to the following benefits being
realised:
1. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify
priorities and identify plans to address these.
2. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services thus allowing early
intervention.
3. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required.
4. Supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework by allowing for more targeted intervention in primary care.
5. Better understanding of local population characteristics through analysis of their health and healthcare outcomes.
All of the above lead to improved patient experience through more effective commissioning of services.

Outputs:

1. As part of the risk stratification processing activity detailed above, GPs have access to the risk stratification tool which highlights patients for whom the GP is responsible and have been classed as at risk. The only identifier available to GPs is the NHS numbers of their own patients. Any further identification of the patients will be completed by the GP on their own systems.
2. Output from the risk stratification tool will provide aggregate reporting of number and percentage of population found to be at risk.
3. Record level output will be available for commissioners (of the CCG), pseudonymised at patient level.
4. GP Practices will be able to view the risk scores for individual patients with the ability to display the underlying SUS+ data for the individual patients when it is required for direct care purposes by someone who has a legitimate relationship with the patient.
5. The CCG will be able to target specific patient groups and enable clinicians with the duty of care for the patient to offer appropriate interventions. The CCG will also be able to:
o Stratify populations based on: disease profiles; conditions currently being treated; current service use; pharmacy use and risk of future overall cost
o Plan work for commissioning services and contracts
o Set up capitated budgets
o Identify health determinants of risk of admission to hospital, or other adverse care outcomes.

Processing:

Data must only be used as stipulated within this Data Sharing Agreement.

Data Processors must only act upon specific instructions from the Data Controller.

Data can only be stored at the addresses listed under storage addresses.

Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data.

All access to data is managed under Roles-Based Access Controls

No patient level data will be linked other than as specifically detailed within this agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality and that data required by the applicant.

NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by "Personnel" (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data)

The DSCRO (part of NHS Digital) will apply Type 2 objections before any identifiable data leaves the DSCRO.

CCGs should work with general practices within their CCG to help them fulfil data controller responsibilities regarding flow of identifiable data into risk stratification tools.


Segregation
Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked.

All access to data is auditable by NHS Digital.


Data Minimisation:
Data Minimisation in relation to the data sets listed within section 3 are listed below. This also includes the purpose on which they would be applied -

For the purpose of Risk Stratification:
• Patients who are normally registered and/or resident within the commissioner (including historical activity where the patient was previously registered or resident in another commissioner



Risk Stratification
1. Identifiable SUS+ data is obtained from the SUS Repository to the Data Services for Commissioners Regional Office (DSCRO).
2. Data quality management and standardisation of data is completed by the DSCRO and the data identifiable at the level of NHS number is transferred securely to Prescribing Services Ltd, who hold the SUS+ data within the secure Data Centre on N3.
3. Identifiable GP Data is securely sent from the GP system to Prescribing Services Ltd.
4. SUS+ data is linked to GP data in the risk stratification tool by the data processor.
5. As part of the risk stratification processing activity, GPs have access to the risk stratification tool within the data
processor, which highlights patients with whom the GP has a legitimate relationship and have been classed as at risk. The only identifier available to GPs is the NHS numbers of their own patients. Any further identification of the patients will be completed by the GP on their own systems.
6. Once Prescribing Services Ltd has completed the processing, the CCG can access the online system via a secure connection to access the data pseudonymised at patient level.


DSfC - NHS Swale CCG; IV. — DARS-NIC-170593-N0R4N

Opt outs honoured: Yes - patient objections upheld, Identifiable (Section 251, Section 251 NHS Act 2006)

Legal basis: Section 251 approval is in place for the flow of identifiable data, National Health Service Act 2006 - s251 - 'Control of patient information'. , Health and Social Care Act 2012 – s261(7); National Health Service Act 2006 - s251 - 'Control of patient information'.

Purposes: No (Clinical Commissioning Group (CCG), Sub ICB Location)

Sensitive: Sensitive

When:DSA runs 2019-01-25 — 2022-01-24 2018.06 — 2020.03.

Access method: Frequent adhoc flow, Frequent Adhoc Flow

Data-controller type: NHS KENT AND MEDWAY CCG, NHS KENT AND MEDWAY ICB - 91Q

Sublicensing allowed: No

Datasets:

  1. SUS for Commissioners

Objectives:

This is an application for the following purposes:
Invoice Validation
Invoice validation is part of a process by which providers of care or services get paid for the work they do.
Invoices are submitted to the Clinical Commissioning Group (CCG) so they are able to ensure that the activity claimed for each patient is their responsibility. This is done by processing and analysing Secondary User Services (SUS+) data, which is received into a secure Controlled Environment for Finance (CEfF). The SUS+ data is identifiable at the level of NHS number. The NHS number is only used to confirm the accuracy of backing-data sets and will not be used further.
The legal basis for this to occur is under Section 251 of NHS Act 2006.
Invoice Validation with be conducted by:
- Optum Health Solutions
The CCG are advised by the data processor whether payment for invoices can be made or not.

Yielded Benefits:

Expected Benefits:

Invoice Validation
1. Financial validation of activity
2. CCG Budget control
3. Commissioning and performance management
4. Meeting commissioning objectives without compromising patient confidentiality
5. The avoidance of misappropriation of public funds to ensure the ongoing delivery of patient care

Outputs:

Invoice Validation
1. Addressing poor data quality issues
2. Production of reports for business intelligence
3. Budget reporting
4. Validation of invoices for non-contracted events

Processing:

Data must only be used as stipulated within this Data Sharing Agreement.

Data Processors must only act upon specific instructions from the Data Controller.

Data can only be stored at the addresses listed under storage addresses.

The Data Controller and any Data Processor will only have access to records of patients of residence and registration within the CCG.

Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data.
All access to data is managed under Roles-Based Access Controls

No patient level data will be linked other than as specifically detailed within this agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality of interest of the applicant.
The DSCRO (part of NHS Digital) will apply Type 2 objections before any identifiable data leaves the DSCRO.
NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data)

Segregation
Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked.
All access to data is audited

Data for the purpose of Invoice Validation is kept within the CEfF, and only used by staff properly trained and authorised for the activity. Only CEfF staff are able to access data in the CEfF and only CEfF staff operate the invoice validation process within the CEfF. Data flows directly in to the CEfF from the DSCRO and from the providers – it does not flow through any other processors.


Invoice Validation
Optum Health Solutions
1. Identifiable SUS+ Data is obtained from the SUS+ Repository to the Data Services for Commissioners Regional Office (DSCRO).
2. The DSCRO pushes a one-way data flow of SUS+ data into the Controlled Environment for Finance (CEfF) in Optum Health Solutions.
3. Optum Health Solutions carry out the following processing activities within the CEfF for invoice validation purposes:
a. Validating that the Clinical Commissioning Group is responsible for payment for the care of the individual by using SUS+ and/or backing flow data.
b. Once the backing information is received, this will be checked against national NHS and local commissioning policies as well as being checked against system access and reports provided by NHS Digital to confirm the payments are:
i. In line with Payment by Results tariffs
ii. are in relation to a patient registered with a CCG GP or resident within the CCG area.
iii. The health care provided should be paid by the CCG in line with CCG guidance. 
4. The CCG are notified that the invoice has been validated and can be paid. Any discrepancies or non-validated invoices are investigated and resolved between Optum Health Solutions CEfF team and the provider meaning that no identifiable data needs to be sent to the CCG. The CCG only receives notification to pay and management reporting detailing the total quantum of invoices received pending, processed etc.


DSfC - NHS Dartford, Gravesham and Swanley CCG; IV. — DARS-NIC-170580-K3W3H

Opt outs honoured: Yes - patient objections upheld, Identifiable (Section 251, Section 251 NHS Act 2006)

Legal basis: Section 251 approval is in place for the flow of identifiable data, National Health Service Act 2006 - s251 - 'Control of patient information'. , Health and Social Care Act 2012 – s261(7); National Health Service Act 2006 - s251 - 'Control of patient information'.

Purposes: No (Clinical Commissioning Group (CCG), Sub ICB Location)

Sensitive: Sensitive

When:DSA runs 2019-01-25 — 2022-01-24 2018.06 — 2020.03.

Access method: Frequent adhoc flow, Frequent Adhoc Flow

Data-controller type: NHS KENT AND MEDWAY CCG, NHS KENT AND MEDWAY ICB - 91Q

Sublicensing allowed: No

Datasets:

  1. SUS for Commissioners

Objectives:

This is an application for the following purposes:
Invoice Validation
Invoice validation is part of a process by which providers of care or services get paid for the work they do.
Invoices are submitted to the Clinical Commissioning Group (CCG) so they are able to ensure that the activity claimed for each patient is their responsibility. This is done by processing and analysing Secondary User Services (SUS+) data, which is received into a secure Controlled Environment for Finance (CEfF). The SUS+ data is identifiable at the level of NHS number. The NHS number is only used to confirm the accuracy of backing-data sets and will not be used further.
The legal basis for this to occur is under Section 251 of NHS Act 2006.
Invoice Validation with be conducted by:
- Optum Health Solutions
The CCG are advised by the data processor whether payment for invoices can be made or not.

Yielded Benefits:

Expected Benefits:

Invoice Validation
1. Financial validation of activity
2. CCG Budget control
3. Commissioning and performance management
4. Meeting commissioning objectives without compromising patient confidentiality
5. The avoidance of misappropriation of public funds to ensure the ongoing delivery of patient care

Outputs:

Invoice Validation
1. Addressing poor data quality issues
2. Production of reports for business intelligence
3. Budget reporting
4. Validation of invoices for non-contracted events

Processing:

Data must only be used as stipulated within this Data Sharing Agreement.

Data Processors must only act upon specific instructions from the Data Controller.

Data can only be stored at the addresses listed under storage addresses.

The Data Controller and any Data Processor will only have access to records of patients of residence and registration within the CCG.

Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data.
All access to data is managed under Roles-Based Access Controls

No patient level data will be linked other than as specifically detailed within this agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality of interest of the applicant.
The DSCRO (part of NHS Digital) will apply Type 2 objections before any identifiable data leaves the DSCRO.
NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data)

Segregation
Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked.
All access to data is audited

Data for the purpose of Invoice Validation is kept within the CEfF, and only used by staff properly trained and authorised for the activity. Only CEfF staff are able to access data in the CEfF and only CEfF staff operate the invoice validation process within the CEfF. Data flows directly in to the CEfF from the DSCRO and from the providers – it does not flow through any other processors.


Invoice Validation
Optum Health Solutions
1. Identifiable SUS+ Data is obtained from the SUS+ Repository to the Data Services for Commissioners Regional Office (DSCRO).
2. The DSCRO pushes a one-way data flow of SUS+ data into the Controlled Environment for Finance (CEfF) in Optum Health Solutions.
3. Optum Health Solutions carry out the following processing activities within the CEfF for invoice validation purposes:
a. Validating that the Clinical Commissioning Group is responsible for payment for the care of the individual by using SUS+ and/or backing flow data.
b. Once the backing information is received, this will be checked against national NHS and local commissioning policies as well as being checked against system access and reports provided by NHS Digital to confirm the payments are:
i. In line with Payment by Results tariffs
ii. are in relation to a patient registered with a CCG GP or resident within the CCG area.
iii. The health care provided should be paid by the CCG in line with CCG guidance. 
4. The CCG are notified that the invoice has been validated and can be paid. Any discrepancies or non-validated invoices are investigated and resolved between Optum Health Solutions CEfF team and the provider meaning that no identifiable data needs to be sent to the CCG. The CCG only receives notification to pay and management reporting detailing the total quantum of invoices received pending, processed etc.


DSfC - NHS Thanet CCG; IV. — DARS-NIC-170552-H5Q2X

Opt outs honoured: Yes - patient objections upheld, Identifiable (Section 251, Section 251 NHS Act 2006)

Legal basis: National Health Service Act 2006 - s251 - 'Control of patient information'. , Health and Social Care Act 2012 – s261(7), Health and Social Care Act 2012 – s261(7)

Purposes: No (Clinical Commissioning Group (CCG), Sub ICB Location)

Sensitive: Sensitive

When:DSA runs 2019-10-12 — 2022-10-11 2018.10 — 2020.03.

Access method: Frequent Adhoc Flow

Data-controller type: NHS KENT AND MEDWAY CCG, NHS KENT AND MEDWAY ICB - 91Q

Sublicensing allowed: No

Datasets:

  1. SUS for Commissioners

Objectives:

This is an application for the following purposes:
Invoice Validation
Invoice validation is part of a process by which providers of care or services get paid for the work they do.
Invoices are submitted to the Clinical Commissioning Group (CCG) so they are able to ensure that the activity claimed for each patient is their responsibility. This is done by processing and analysing Secondary User Services (SUS+) data, which is received into a secure Controlled Environment for Finance (CEfF). The SUS+ data is identifiable at the level of NHS number. The NHS number is only used to confirm the accuracy of backing-data sets and will not be used further.
The legal basis for this to occur is under Section 251 of NHS Act 2006.
Invoice Validation with be conducted by:
- Optum Health Solutions (Data Processor)
The CCG are advised by the data processor whether payment for invoices can be made or not.

Yielded Benefits:

Expected Benefits:

Invoice Validation
1. Financial validation of activity
2. CCG Budget control
3. Commissioning and performance management
4. Meeting commissioning objectives without compromising patient confidentiality
5. The avoidance of misappropriation of public funds to ensure the ongoing delivery of patient care

Outputs:

Invoice Validation
1. Addressing poor data quality issues
2. Production of reports for business intelligence
3. Budget reporting
4. Validation of invoices for non-contracted events

Processing:

Data must only be used as stipulated within this Data Sharing Agreement.

Data Processors must only act upon specific instructions from the Data Controller.

Data can only be stored at the addresses listed under storage addresses.

The Data Controller and any Data Processor will only have access to records of patients of residence and registration within the CCG.

Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data.
All access to data is managed under Roles-Based Access Controls

No patient level data will be linked other than as specifically detailed within this agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality of interest of the applicant.

NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data)

Segregation
Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked.
All access to data is audited

Data for the purpose of Invoice Validation is kept within the CEfF, and only used by staff properly trained and authorised for the activity. Only CEfF staff are able to access data in the CEfF and only CEfF staff operate the invoice validation process within the CEfF. Data flows directly in to the CEfF from the DSCRO and from the providers – it does not flow through any other processors.


Invoice Validation
Optum Health Solutions (Data Processor 2)
1. Identifiable SUS+ Data is obtained from the SUS+ Repository to the Data Services for Commissioners Regional Office (DSCRO).
2. The DSCRO pushes a one-way data flow of SUS+ data into the Controlled Environment for Finance (CEfF) in Optum Health Solutions.
3. Optum Health Solutions carry out the following processing activities within the CEfF for invoice validation purposes:
a. Validating that the Clinical Commissioning Group is responsible for payment for the care of the individual by using SUS+ and/or backing flow data.
b. Once the backing information is received, this will be checked against national NHS and local commissioning policies as well as being checked against system access and reports provided by NHS Digital to confirm the payments are:
i. In line with Payment by Results tariffs
ii. are in relation to a patient registered with a CCG GP or resident within the CCG area.
iii. The health care provided should be paid by the CCG in line with CCG guidance. 
4. The CCG are notified that the invoice has been validated and can be paid. Any discrepancies or non-validated invoices are investigated and resolved between Optum Health Solutions CEfF team and the provider meaning that no identifiable data needs to be sent to the CCG. The CCG only receives notification to pay and management reporting detailing the total quantum of invoices received pending, processed etc.


DSfC - NHS Canterbury and Coastal CCG; IV. — DARS-NIC-170444-L5Z2P

Opt outs honoured: Yes - patient objections upheld, Identifiable (Section 251, Section 251 NHS Act 2006)

Legal basis: Section 251 approval is in place for the flow of identifiable data, National Health Service Act 2006 - s251 - 'Control of patient information'. , Health and Social Care Act 2012 – s261(7), Health and Social Care Act 2012 – s261(7)

Purposes: No (Clinical Commissioning Group (CCG), Sub ICB Location)

Sensitive: Sensitive

When:DSA runs 2019-09-25 — 2022-09-24 2018.06 — 2020.03.

Access method: Frequent adhoc flow, Frequent Adhoc Flow

Data-controller type: NHS KENT AND MEDWAY CCG, NHS KENT AND MEDWAY ICB - 91Q

Sublicensing allowed: No

Datasets:

  1. SUS for Commissioners

Objectives:

This is an application for the following purposes:
Invoice Validation
Invoice validation is part of a process by which providers of care or services get paid for the work they do.
Invoices are submitted to the Clinical Commissioning Group (CCG) so they are able to ensure that the activity claimed for each patient is their responsibility. This is done by processing and analysing Secondary User Services (SUS+) data, which is received into a secure Controlled Environment for Finance (CEfF). The SUS+ data is identifiable at the level of NHS number. The NHS number is only used to confirm the accuracy of backing-data sets and will not be used further.
The legal basis for this to occur is under Section 251 of NHS Act 2006.
Invoice Validation with be conducted by:
- Optum Health Solutions (Data Processor)
The CCG are advised by the data processor whether payment for invoices can be made or not.

Yielded Benefits:

Expected Benefits:

Invoice Validation
1. Financial validation of activity
2. CCG Budget control
3. Commissioning and performance management
4. Meeting commissioning objectives without compromising patient confidentiality
5. The avoidance of misappropriation of public funds to ensure the ongoing delivery of patient care

Outputs:

Invoice Validation
1. Addressing poor data quality issues
2. Production of reports for business intelligence
3. Budget reporting
4. Validation of invoices for non-contracted events

Processing:

Data must only be used as stipulated within this Data Sharing Agreement.

Data Processors must only act upon specific instructions from the Data Controller.

Data can only be stored at the addresses listed under storage addresses.

The Data Controller and any Data Processor will only have access to records of patients of residence and registration within the CCG.

Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data.
All access to data is managed under Roles-Based Access Controls

No patient level data will be linked other than as specifically detailed within this agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality of interest of the applicant.

NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data)

Segregation
Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked.
All access to data is audited

Data for the purpose of Invoice Validation is kept within the CEfF, and only used by staff properly trained and authorised for the activity. Only CEfF staff are able to access data in the CEfF and only CEfF staff operate the invoice validation process within the CEfF. Data flows directly in to the CEfF from the DSCRO and from the providers – it does not flow through any other processors.


Invoice Validation
Optum Health Solutions (Data Processor 2)
1. Identifiable SUS+ Data is obtained from the SUS+ Repository to the Data Services for Commissioners Regional Office (DSCRO).
2. The DSCRO pushes a one-way data flow of SUS+ data into the Controlled Environment for Finance (CEfF) in Optum Health Solutions.
3. Optum Health Solutions carry out the following processing activities within the CEfF for invoice validation purposes:
a. Validating that the Clinical Commissioning Group is responsible for payment for the care of the individual by using SUS+ and/or backing flow data.
b. Once the backing information is received, this will be checked against national NHS and local commissioning policies as well as being checked against system access and reports provided by NHS Digital to confirm the payments are:
i. In line with Payment by Results tariffs
ii. are in relation to a patient registered with a CCG GP or resident within the CCG area.
iii. The health care provided should be paid by the CCG in line with CCG guidance. 
4. The CCG are notified that the invoice has been validated and can be paid. Any discrepancies or non-validated invoices are investigated and resolved between Optum Health Solutions CEfF team and the provider meaning that no identifiable data needs to be sent to the CCG. The CCG only receives notification to pay and management reporting detailing the total quantum of invoices received pending, processed etc.


DSfC - NHS Ashford CCG; IV. — DARS-NIC-170430-D2S8V

Opt outs honoured: Yes - patient objections upheld, Identifiable (Section 251, Section 251 NHS Act 2006)

Legal basis: Section 251 approval is in place for the flow of identifiable data, National Health Service Act 2006 - s251 - 'Control of patient information'. , Health and Social Care Act 2012 – s261(7); National Health Service Act 2006 - s251 - 'Control of patient information'.

Purposes: No (Clinical Commissioning Group (CCG), Sub ICB Location)

Sensitive: Sensitive

When:DSA runs 2019-09-01 — 2022-08-31 2018.06 — 2020.03.

Access method: Frequent adhoc flow, Frequent Adhoc Flow

Data-controller type: NHS KENT AND MEDWAY CCG, NHS KENT AND MEDWAY ICB - 91Q

Sublicensing allowed: No

Datasets:

  1. SUS for Commissioners

Objectives:

Invoice Validation
Invoice validation is part of a process by which providers of care or services get paid for the work they do.
Invoices are submitted to the Clinical Commissioning Group (CCG) so they are able to ensure that the activity claimed for each patient is their responsibility. This is done by processing and analysing Secondary User Services (SUS+) data, which is received into a secure Controlled Environment for Finance (CEfF). The SUS+ data is identifiable at the level of NHS number. The NHS number is only used to confirm the accuracy of backing-data sets and will not be used further.

Invoice Validation with be conducted by Optum Health Solutions.
The CCG are advised by the Optum Health Solution whether payment for invoices can be made or not.

Yielded Benefits:

Expected Benefits:

Invoice Validation
1. Financial validation of activity
2. CCG Budget control
3. Commissioning and performance management
4. Meeting commissioning objectives without compromising patient confidentiality
5. The avoidance of misappropriation of public funds to ensure the ongoing delivery of patient care

Outputs:

Invoice Validation
1. Addressing poor data quality issues
2. Production of reports for business intelligence
3. Budget reporting
4. Validation of invoices for non-contracted events

Processing:

Data must only be used as stipulated within this Data Sharing Agreement.

Data Processors must only act upon specific instructions from the Data Controller.

Data can only be stored at the addresses listed under storage addresses.

The Data Controller and any Data Processor will only have access to records of patients of residence and registration within the CCG.

Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data.

All access to data is managed under Roles-Based Access Controls

No patient level data will be linked other than as specifically detailed within this agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality of interest of the applicant.

NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data)

Segregation
Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked.
All access to data is audited

Data for the purpose of Invoice Validation is kept within the CEfF, and only used by staff properly trained and authorised for the activity. Only CEfF staff are able to access data in the CEfF and only CEfF staff operate the invoice validation process within the CEfF. Data flows directly in to the CEfF from the DSCRO and from the providers – it does not flow through any other processors.


Invoice Validation - Optum Health Solutions
1. Identifiable SUS+ Data is obtained from the SUS+ Repository to the Data Services for Commissioners Regional Office (DSCRO).
2. The DSCRO pushes a one-way data flow of SUS+ data into the Controlled Environment for Finance (CEfF) in Optum Health Solutions.
3. Optum Health Solutions carry out the following processing activities within the CEfF for invoice validation purposes:
a. Validating that the Clinical Commissioning Group is responsible for payment for the care of the individual by using SUS+ and/or backing flow data.
b. Once the backing information is received, this will be checked against national NHS and local commissioning policies as well as being checked against system access and reports provided by NHS Digital to confirm the payments are:
i. In line with Payment by Results tariffs
ii. are in relation to a patient registered with a CCG GP or resident within the CCG area.
iii. The health care provided should be paid by the CCG in line with CCG guidance. 
4. The CCG are notified that the invoice has been validated and can be paid. Any discrepancies or non-validated invoices are investigated and resolved between Optum Health Solutions CEfF team and the provider meaning that no identifiable data needs to be sent to the CCG. The CCG only receives notification to pay and management reporting detailing the total quantum of invoices received pending, processed etc.


DSfC - NHS Thanet CCG - Comm — DARS-NIC-155287-C4K4G

Opt outs honoured: No - data flow is not identifiable, Anonymised - ICO Code Compliant (Does not include the flow of confidential data)

Legal basis: Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Health and Social Care Act 2012 – s261(2)(b)(ii)

Purposes: No (Clinical Commissioning Group (CCG), Sub ICB Location)

Sensitive: Sensitive

When:DSA runs 2019-07-15 — 2022-07-14 2018.06 — 2020.03.

Access method: Frequent adhoc flow, Frequent Adhoc Flow

Data-controller type: NHS KENT AND MEDWAY CCG, NHS KENT AND MEDWAY ICB - 91Q

Sublicensing allowed: No

Datasets:

  1. Acute-Local Provider Flows
  2. Ambulance-Local Provider Flows
  3. Children and Young People Health
  4. Community Services Data Set
  5. Community-Local Provider Flows
  6. Demand for Service-Local Provider Flows
  7. Diagnostic Imaging Dataset
  8. Diagnostic Services-Local Provider Flows
  9. Emergency Care-Local Provider Flows
  10. Experience, Quality and Outcomes-Local Provider Flows
  11. Improving Access to Psychological Therapies Data Set
  12. Maternity Services Data Set
  13. Mental Health and Learning Disabilities Data Set
  14. Mental Health Minimum Data Set
  15. Mental Health Services Data Set
  16. National Cancer Waiting Times Monitoring DataSet (CWT)
  17. Other Not Elsewhere Classified (NEC)-Local Provider Flows
  18. Population Data-Local Provider Flows
  19. Primary Care Services-Local Provider Flows
  20. Public Health and Screening Services-Local Provider Flows
  21. SUS for Commissioners
  22. Civil Registration - Births
  23. Civil Registration - Deaths
  24. National Diabetes Audit
  25. Patient Reported Outcome Measures
  26. National Cancer Waiting Times Monitoring DataSet (NCWTMDS)
  27. Improving Access to Psychological Therapies Data Set_v1.5

Objectives:

This is an application for the following purposes:
Commissioning
To use pseudonymised data to provide intelligence to support the commissioning of health services. The data (containing both clinical and financial information) is analysed so that health care provision can be planned to support the needs of the population within the CCG area.
The CCGs commission services from a range of providers covering a wide array of services. Each of the data flow categories requested supports the commissioned activity of one or more providers.
The following pseudonymised datasets are required to provide intelligence to support commissioning of health services:
- Secondary Uses Service (SUS+)
- Local Provider Flows
o Acute
o Ambulance
o Demand for Service
o Diagnostic Service
o Emergency Care
o Experience, Quality and Outcomes
o Other Not Elsewhere Classified
o Population Data
o Primary Care Services
o Public Health Screening
- Mental Health Minimum Data Set (MHMDS)
- Mental Health Learning Disability Data Set (MHLDDS)
- Mental Health Services Data Set (MHSDS)
- Maternity Services Data Set (MSDS)
- Improving Access to Psychological Therapy (IAPT)
- Child and Young People Health Service (CYPHS)
- Community Services Data Set (CSDS)
- Diagnostic Imaging Data Set (DIDS)
- National Cancer Waiting Times Monitoring Data Set (CWT)

The pseudonymised data is required to for the following purposes:
§ Population health management:
• Understanding the interdependency of care services
• Targeting care more effectively
• Using value as the redesign principle
• Ensuring we do what we should
§ Data Quality and Validation – allowing data quality checks on the submitted data
§ Thoroughly investigating the needs of the population, to ensure the right services are available for individuals when and where they need them
§ Understanding cohorts of residents who are at risk of becoming users of some of the more expensive services, to better understand and manage those needs
§ Monitoring population health and care interactions to understand where people may slip through the net, or where the provision of care may be being duplicated
§ Modelling activity across all data sets to understand how services interact with each other, and to understand how changes in one service may affect flows through another
§ Service redesign
§ Health Needs Assessment – identification of underlying disease prevalence within the local population
§ Patient stratification and predictive modelling - to identify specific patients at risk of requiring hospital admission and other avoidable factors such as risk of falls, computed using algorithms executed against linked de-identified data, and identification of future service delivery models

The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets.
Processing for commissioning will be conducted by:
- MedeAnalytics (Data Processor 1)
- Optum Health Solutions (Data Processor 2)
- NHS South Kent Coast CCG (Data Processor 3)

Yielded Benefits:

Expected Benefits:

Commissioning
1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, integrated care and pathways.
a. Analysis to support full business cases.
b. Develop business models.
c. Monitor In year projects.
2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types.
3. Health economic modelling using:
a. Analysis on provider performance against 18 weeks wait targets.
b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients.
c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway.
d. Analysis to understand emergency care and linking A&E and Emergency Urgent Care Flows (EUCC).
4. Commissioning cycle support for grouping and re-costing previous activity.
5. Enables monitoring of:
a. CCG outcome indicators.
b. Financial and Non-financial validation of activity.
c. Successful delivery of integrated care within the CCG.
d. Checking frequent or multiple attendances to improve early intervention and avoid admissions.
e. Case management.
f. Care service planning.
g. Commissioning and performance management.
h. List size verification by GP practices.
i. Understanding the care of patients in nursing homes.
6. Feedback to NHS service providers on data quality at an aggregate and individual record level – only on data initially provided by the service providers.
7. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these.
8. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services and early intervention of appropriate care.
9. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required.
10. Potentially reduced premature mortality by more targeted intervention in primary care, which supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework.
11. Better understanding of the health of and the variations in health outcomes within the population to help understand local population characteristics.
12. Better understanding of contract requirements, contract execution, and required services for management of existing contracts, and to assist with identification and planning of future contracts
13. Insights into patient outcomes, and identification of the possible efficacy of outcomes-based contracting opportunities.
14. Reviewing current service provision
a. Cost-benefit analysis and service impact assessments to underpin service transformation across health economy
b. Service planning and re-design (development of NMoC and integrated care pathways, new partnerships, working with new providers etc.)
c. Impact analysis for different models or productivity measures, efficiency and experience
d. Service and pathway review
e. Service utilisation review
15. Ensuring compliance with evidence and guidance
a. Testing approaches with evidence and compliance with guidance.
16. Monitoring outcomes
a. Analysis of variation in outcomes across population group
17. Understanding how services impact across the health economy
a. Service evaluation
b. Programme reviews
c. Analysis of productivity, outcomes, experience, plan, targets and actuals
d. Assessing value for money and efficiency gains
e. Understanding impact of services on health inequalities
18. Understanding how services impact on the health of the population and patient cohorts
a. Measuring and assessing improvement in service provision, patient experience & outcomes and the cost to achieve this
b. Propensity matching and scoring
c. Triple aim analysis
19. Understanding future drivers for change across health economy
a. Forecasting health and care needs for population and population cohorts across STPs
b. Identifying changes in disease trends and prevalence
c. Efficiencies that can be gained from procuring services across wider footprints, from new innovations
d. Predictive modelling
20. Delivering services that meet changing needs of population
a. Analysis to support policy development
b. Ethical and equality impact assessments
c. Implementation of NMOC
d. What do next years contracts need to include?
e. Workforce planning
21. Maximising services and outcomes within financial envelopes across health economy
a. What-if analysis
b. Cost-benefit analysis
c. Health economics analysis
d. Scenario planning and modelling
e. Investment and disinvestment in services analysis
f. Opportunity analysis
All of the above will lead to improved patient experience through more effective commissioning of services and enable us and our providers to direct our finite health and social care (public health) resources more efficiently and effectively.
Users can better understand variation in their system, and make comparisons between populations and organisations in a fair and meaningful way with a greater understanding of what normal is. This will support routine opportunity analyses that they carry out in order to best target resources and best understand which activities have had a genuine benefit, and helped reduce costs to the system.
In addition, the platform provides access to comprehensive supporting information that commissioning organisations such as Clinical Commissioning Groups use to ensure that the services they commission:
• deliver the best outcomes for their patients
• cater for and meet the needs of the population they are responsible for;
• monitor condition prevalence within the population
• identify health inequalities and work with local organisations and agencies to remove them

Outputs:

Commissioning
1. Commissioner reporting:
a. Summary by provider view - plan & actuals year to date (YTD).
b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD.
c. Summary by provider view - activity & finance variance by POD.
d. Planned care by provider view - activity & finance plan & actuals YTD.
e. Planned care by POD view - activity plan & actuals YTD.
f. Provider reporting.
g. Statutory returns.
h. Statutory returns - monthly activity return.
i. Statutory returns - quarterly activity return.
j. Delayed discharges.
k. Quality & performance referral to treatment reporting.
2. Readmissions analysis.
3. Production of aggregate reports for CCG Business Intelligence.
4. Production of project / programme level dashboards.
5. Monitoring of acute / community / mental health quality matrix.
6. Clinical coding reviews / audits.
7. Budget reporting down to individual GP Practice level.
8. GP Practice level dashboard reports include high flyers.
9. Comparators of CCG performance with similar CCGs as set out by a specific range of care quality and performance measures detailed activity and cost reports
10. Data Quality and Validation measures allowing data quality checks on the submitted data
11. Contract Management and Modelling
12. Patient Stratification, such as:
a. Patients at highest risk of admission
b. Most expensive patients (top 15%)
c. Frail and elderly
d. Patients that are currently in hospital
e. Patients with most referrals to secondary care
f. Patients with most emergency activity
g. Patients with most expensive prescriptions
h. Patients recently moving from one care setting to another
i. Discharged from hospital
ii. Discharged from community
13. Identifying and managing preventable and existing conditions
a. Identifying types of individuals and population cohorts at risk of non-elective re-admission
b. Risk stratification to identify populations suitable for case management
c. Risk profiling and predictive modelling
d. Risk stratification for planning services for population cohorts
e. Identification of disease incidence and diagnosis stratification
14. Reducing health inequalities
a. Identifying cohorts of patients who have worse health outcomes typically deprived, ethnic groups, homeless, travellers etc. to enable services to proactively target their needs
b. Socio-demographic analysis
15. Managing demand
a. Waiting times analysis
b. Service demand and supply modelling
c. Understanding cross-border and overseas visitor
d. Winter planning
e. Emergency preparedness, business continuity, recovery and contingency planning
16. Care co-ordination and planning
a. Planning packages of care
b. Service planning
c. Planning care co-ordination
17. Monitoring individual patient health, service utilisation, pathway compliance experience & outcomes across the heath and care system
a. Patient pathway analysis across health and care
b. Outcomes & experience analysis
c. Analysis to support services to react to terror situations
d. Analysis to identify vulnerable patients with potential safeguarding issues
e. Understanding equity of care and unwarranted variation
f. Modelling patient flow
g. Tracking patient pathways
h. Monitoring to support NMoC, ACOs, STPs
i. Identifying duplications in care
j. Identifying gaps in care, missed diagnoses and triple fail events
k. Analysing individual and aggregated timelines
18. Undertaking budget planning, management and reporting
a. Tracking financial performance against plans
b. Budget reporting
c. Tariff development
d. Developing and monitoring capitated budgets
e. Developing and monitoring individual-level budgets
f. Future budget planning and forecasting
g. Paying for care of overseas visitors and cross-border flow
19. Monitoring the value for money
a. Service-level costing & comparisons
b. Identification of cost pressures
c. Cost benefit analysis
d. Equity of spend across services and population cohorts
e. Finance impact assessment
20. Comparing population groups, peers, national and international best practice
a. Identification of variation in productivity, cost, outcomes, quality, experience, compared with peers, national and international & best practice
b. Benchmarking against other parts of the country
c. Identifying unwarranted variations
21. Comparing expected levels
a. Standardised comparisons for prevalence, activity, cost, quality, experience, outcomes for given populations
22. Comparing local targets & plan
a. Monitoring of local variation in productivity, cost, outcomes, quality and experience
b. Local performance dashboards by service provider, commissioner, geography, NMOC, STPs
23. Monitoring activity and cost compliance against contract and agreed plans
a. Contract monitoring
b. Contract reconciliation and challenge
24. Monitoring provider quality, demand, experience and outcomes against contract and agreed plans
a. Performance dashboards
b. CQUIN reporting
c. Clinical audit
d. Patient experience surveys
e. Demand, supply, outcome & experience analysis
f. Monitoring cross-border flows and overseas visitor activity
25. Improving provider data quality
a. Coding audit
b. Data quality validation and review
c. Checking validity of patient identity and commissioner assignment
Analytics Insights
Reports, charts and dashboards providing insights into:
1. Comparators of CCG performance with similar CCGs as set out by a specific range of care quality and performance measures detailed activity and cost reports
2. Data Quality and Validation measures allowing data quality checks on the submitted data
3. Contract Management and Modelling
4. Health needs assessment and predictive modelling instead, such as:
o Patients at highest risk of admission
o Most expensive patients (top 15%)
o Frail and elderly
o Patients that are currently in hospital
o Patients with most referrals to secondary care
o Patients with most emergency activity
o Patients with most expensive prescriptions
o Patients recently moving from one care setting to another
i. Discharged from hospital
ii. Discharged from community
5. Understanding impacts and interdependency of care services

Processing:

Data must only be used as stipulated within this Data Sharing Agreement.

Data Processors must only act upon specific instructions from the Data Controller.

Data can only be stored at the addresses listed under storage addresses.

The Data Controller and any Data Processor will only have access to records of patients of residence and registration within the CCG.

Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data.
All access to data is managed under Roles-Based Access Controls

No patient level data will be linked other than as specifically detailed within this agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality of interest of the applicant.
NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data)

Segregation
Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked.
All access to data is audited


Commissioning
The Data Services for Commissioners Regional Office (DSCRO) obtains the following data sets:
1. SUS+
2. Local Provider Flows (received directly from providers)
o Ambulance
o Demand for Service
o Diagnostic Service
o Emergency Care
o Experience, Quality and Outcomes
o Other Not Elsewhere Classified
o Population Data
o Primary Care Services
o Public Health Screening
3. Mental Health Minimum Data Set (MHMDS)
4. Mental Health Learning Disability Data Set (MHLDDS)
5. Mental Health Services Data Set (MHSDS)
6. Maternity Services Data Set (MSDS)
7. Improving Access to Psychological Therapy (IAPT)
8. Child and Young People Health Service (CYPHS)
9. Community Services Data Set (CSDS)
10. Diagnostic Imaging Data Set (DIDS)
11. National Cancer Waiting Times Monitoring Data Set (CWT)

Data Processor 1 – MedeAnalytics
Data quality management and pseudonymisation is completed within the DSCRO using the MedeAnalytics tool specific to the CCG and is then disseminated as follows:
1) Pseudonymised SUS+, Local Provider data, Mental Health data (MHSDS, MHMDS, MHLDDS), Maternity data (MSDS), Improving Access to Psychological Therapies data (IAPT), Child and Young People’s Health data (CYPHS), Community Services Data Set (CSDS), National Cancer Waiting Times Monitoring Data Set (CWT) and Diagnostic Imaging data (DIDS) only is securely transferred from the DSCRO to MedeAnalytics.
2) MedeAnalytics also receives the following pseudonymised data from providers that has been pseudonymised at source using the MedeAnalytics pseudonymisation tool:
o Community Data
o Mental Health Data
o Social Care Data
o GP Data
o Any Qualified Provider data
3) MedeAnalytics add derived fields, link data and provide analysis to:
o See patient journeys for pathways or service design, re-design and de-commissioning
o Check recorded activity against contracts or invoices and facilitate discussions with providers
o Undertake population health management
o Undertake data quality and validation checks
o Thoroughly investigate the needs of the population
o Understand cohorts of residents who are at risk
o Conduct Health Needs Assessments
4) Allowed linkage is between the data sets contained within point 1 and point 2 only.
5) MedeAnalytics then pass the processed, pseudonymised and linked data to the CCG.
6) Aggregation of required data for CCG management use will be completed by MedeAnalytics or the CCG as instructed by the CCG.
7) Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set.
8) MedeAnalytics also pass pseudonymised SUS+ and GP data to Optum Health Solutions.

Data Processor 2 – Optum Health Solutions
9) Optum Health Solutions provide analysis to
o Data integration
o Undertake population health management
10) Aggregation of data is completed by Optum Health Solutions.
11) Patient level data will not be shared outside of Optum Health Solutions and will only be shared within Optum Health Solutions on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set

For clarity: Optum require data for our more transformational Public Health facing tools such as Health Population Manager whereas MedeAnalytics will be dealing with the day to day more transactional (SUS, SLAM, MH, Community…) data feeds required for contracting and commissioning purposes.
MedeAnalytics outputs only (Direct Care only)
Re-identification (managed under RBAC) requires an additional step to access re-identification keys held by an independent third party key management service that has no access to the data. Disabling a user’s account in the key management system immediately removes the ability of that user to access re-identification keys.
Each Re-identification requires a different key, so inappropriate retention of keys (which is neither allowed, nor easy to accomplish by design) will not result in compromise of data
Only GP Practice users are able to re-identify patients and only when they have a legitimate reason and a legal right to re-identify, and can only access data to which they have rights under RBAC (which is CG/SIRO approved – within the CCG)
All data providers for a particular region (according to contract) are issued with encryption keys that ensure data for their region can only be linked to data from other providers for the same region. This means that data for two different regional customers cannot be accidentally mixed.

Data Processor 3 – NHS South Kent Coast CCG
1. Pseudonymised Mental Health data (MHSDS, MHMDS, MHLDDS), Improving Access to Psychological Therapies data (IAPT), Child and Young People’s Health data (CYPHS), Community Services Data Set (CSDS) and National Cancer Waiting Times Monitoring Data Set (CWT) only is securely transferred from the DSCRO to NHS South Kent Coast CCG
2. NHS South Kent Coast CCG add derived fields, link data and provide analysis to:
a. See patient journeys for pathways or service design, re-design and de-commissioning.
b. Check recorded activity against contracts or invoices and facilitate discussions with providers.
c. Undertake population health management
d. Undertake data quality and validation checks
e. Thoroughly investigate the needs of the population
f. Understand cohorts of residents who are at risk
g. Conduct Health Needs Assessments
3. Allowed linkage is between the data sets contained within point 1.
4. NHS South Kent Coast CCG then pass the processed, pseudonymised and linked data to the CCG.
5. Aggregation of required data for CCG management use will be completed by NHS South Kent Coast CCG or the CCG as instructed by the CCG.
6. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set.


DSfC - NHS Canterbury & Coastal CCG - Comm — DARS-NIC-155278-D1D1J

Opt outs honoured: No - data flow is not identifiable, Anonymised - ICO Code Compliant (Does not include the flow of confidential data)

Legal basis: Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Health and Social Care Act 2012 – s261(2)(b)(ii)

Purposes: No (Clinical Commissioning Group (CCG), Sub ICB Location)

Sensitive: Sensitive, and Non Sensitive

When:DSA runs 2019-07-15 — 2022-07-14 2018.06 — 2020.03.

Access method: Frequent adhoc flow, Frequent Adhoc Flow

Data-controller type: NHS KENT AND MEDWAY CCG, NHS KENT AND MEDWAY ICB - 91Q

Sublicensing allowed: No

Datasets:

  1. Acute-Local Provider Flows
  2. Ambulance-Local Provider Flows
  3. Children and Young People Health
  4. Community Services Data Set
  5. Community-Local Provider Flows
  6. Demand for Service-Local Provider Flows
  7. Diagnostic Imaging Dataset
  8. Diagnostic Services-Local Provider Flows
  9. Emergency Care-Local Provider Flows
  10. Experience, Quality and Outcomes-Local Provider Flows
  11. Improving Access to Psychological Therapies Data Set
  12. Maternity Services Data Set
  13. Mental Health and Learning Disabilities Data Set
  14. Mental Health Minimum Data Set
  15. Mental Health Services Data Set
  16. National Cancer Waiting Times Monitoring DataSet (CWT)
  17. Other Not Elsewhere Classified (NEC)-Local Provider Flows
  18. Population Data-Local Provider Flows
  19. Primary Care Services-Local Provider Flows
  20. Public Health and Screening Services-Local Provider Flows
  21. SUS for Commissioners
  22. Civil Registration - Births
  23. Civil Registration - Deaths
  24. National Diabetes Audit
  25. Patient Reported Outcome Measures
  26. National Cancer Waiting Times Monitoring DataSet (NCWTMDS)
  27. Improving Access to Psychological Therapies Data Set_v1.5

Objectives:

This is an application for the following purposes:
Commissioning
To use pseudonymised data to provide intelligence to support the commissioning of health services. The data (containing both clinical and financial information) is analysed so that health care provision can be planned to support the needs of the population within the CCG area.
The CCGs commission services from a range of providers covering a wide array of services. Each of the data flow categories requested supports the commissioned activity of one or more providers.
The following pseudonymised datasets are required to provide intelligence to support commissioning of health services:
- Secondary Uses Service (SUS+)
- Local Provider Flows
o Acute
o Ambulance
o Demand for Service
o Diagnostic Service
o Emergency Care
o Experience, Quality and Outcomes
o Other Not Elsewhere Classified
o Population Data
o Primary Care Services
o Public Health Screening
- Mental Health Minimum Data Set (MHMDS)
- Mental Health Learning Disability Data Set (MHLDDS)
- Mental Health Services Data Set (MHSDS)
- Maternity Services Data Set (MSDS)
- Improving Access to Psychological Therapy (IAPT)
- Child and Young People Health Service (CYPHS)
- Community Services Data Set (CSDS)
- Diagnostic Imaging Data Set (DIDS)
- National Cancer Waiting Times Monitoring Data Set (CWT)

The pseudonymised data is required to for the following purposes:
§ Population health management:
• Understanding the interdependency of care services
• Targeting care more effectively
• Using value as the redesign principle
• Ensuring we do what we should
§ Data Quality and Validation – allowing data quality checks on the submitted data
§ Thoroughly investigating the needs of the population, to ensure the right services are available for individuals when and where they need them
§ Understanding cohorts of residents who are at risk of becoming users of some of the more expensive services, to better understand and manage those needs
§ Monitoring population health and care interactions to understand where people may slip through the net, or where the provision of care may be being duplicated
§ Modelling activity across all data sets to understand how services interact with each other, and to understand how changes in one service may affect flows through another
§ Service redesign
§ Health Needs Assessment – identification of underlying disease prevalence within the local population
§ Patient stratification and predictive modelling - to identify specific patients at risk of requiring hospital admission and other avoidable factors such as risk of falls, computed using algorithms executed against linked de-identified data, and identification of future service delivery models

The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets.
Processing for commissioning will be conducted by:
- MedeAnalytics (Data Processor 1)
- Optum Health Solutions (Data Processor 2)
- NHS South Kent Coast CCG (Data Processor 3)

Yielded Benefits:

Commissioning 1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, integrated care and pathways. a. Analysis to support full business cases. b. Develop business models. c. Monitor In year projects. 2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types. 3. Health economic modelling using: a. Analysis on provider performance against 18 weeks wait targets. b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients. c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway. d. Analysis to understand emergency care and linking A&E and Emergency Urgent Care Flows (EUCC). 4. Commissioning cycle support for grouping and re-costing previous activity. 5. Enables monitoring of: a. CCG outcome indicators. b. Financial and Non-financial validation of activity. c. Successful delivery of integrated care within the CCG. d. Checking frequent or multiple attendances to improve early intervention and avoid admissions. e. Case management. f. Care service planning. g. Commissioning and performance management. h. List size verification by GP practices. i. Understanding the care of patients in nursing homes. 6. Feedback to NHS service providers on data quality at an aggregate and individual record level – only on data initially provided by the service providers. 7. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these. 8. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services and early intervention of appropriate care. 9. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required. 10. Potentially reduced premature mortality by more targeted intervention in primary care, which supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework. 11. Better understanding of the health of and the variations in health outcomes within the population to help understand local population characteristics. 12. Better understanding of contract requirements, contract execution, and required services for management of existing contracts, and to assist with identification and planning of future contracts 13. Insights into patient outcomes, and identification of the possible efficacy of outcomes-based contracting opportunities. 14. Reviewing current service provision a. Cost-benefit analysis and service impact assessments to underpin service transformation across health economy b. Service planning and re-design (development of NMoC and integrated care pathways, new partnerships, working with new providers etc.) c. Impact analysis for different models or productivity measures, efficiency and experience d. Service and pathway review e. Service utilisation review 15. Ensuring compliance with evidence and guidance a. Testing approaches with evidence and compliance with guidance. 16. Monitoring outcomes a. Analysis of variation in outcomes across population group 17. Understanding how services impact across the health economy a. Service evaluation b. Programme reviews c. Analysis of productivity, outcomes, experience, plan, targets and actuals d. Assessing value for money and efficiency gains e. Understanding impact of services on health inequalities 18. Understanding how services impact on the health of the population and patient cohorts a. Measuring and assessing improvement in service provision, patient experience & outcomes and the cost to achieve this b. Propensity matching and scoring c. Triple aim analysis 19. Understanding future drivers for change across health economy a. Forecasting health and care needs for population and population cohorts across STPs b. Identifying changes in disease trends and prevalence c. Efficiencies that can be gained from procuring services across wider footprints, from new innovations d. Predictive modelling 20. Delivering services that meet changing needs of population a. Analysis to support policy development b. Ethical and equality impact assessments c. Implementation of NMOC d. What do next years contracts need to include? e. Workforce planning 21. Maximising services and outcomes within financial envelopes across health economy a. What-if analysis b. Cost-benefit analysis c. Health economics analysis d. Scenario planning and modelling e. Investment and disinvestment in services analysis f. Opportunity analysis All of the above will lead to improved patient experience through more effective commissioning of services and enable us and our providers to direct our finite health and social care (public health) resources more efficiently and effectively. Users can better understand variation in their system, and make comparisons between populations and organisations in a fair and meaningful way with a greater understanding of what normal is. This will support routine opportunity analyses that they carry out in order to best target resources and best understand which activities have had a genuine benefit, and helped reduce costs to the system. In addition, the platform provides access to comprehensive supporting information that commissioning organisations such as Clinical Commissioning Groups use to ensure that the services they commission: • deliver the best outcomes for their patients • cater for and meet the needs of the population they are responsible for; • monitor condition prevalence within the population • identify health inequalities and work with local organisations and agencies to remove them

Expected Benefits:

Commissioning
1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, integrated care and pathways.
a. Analysis to support full business cases.
b. Develop business models.
c. Monitor In year projects.
2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types.
3. Health economic modelling using:
a. Analysis on provider performance against 18 weeks wait targets.
b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients.
c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway.
d. Analysis to understand emergency care and linking A&E and Emergency Urgent Care Flows (EUCC).
4. Commissioning cycle support for grouping and re-costing previous activity.
5. Enables monitoring of:
a. CCG outcome indicators.
b. Financial and Non-financial validation of activity.
c. Successful delivery of integrated care within the CCG.
d. Checking frequent or multiple attendances to improve early intervention and avoid admissions.
e. Case management.
f. Care service planning.
g. Commissioning and performance management.
h. List size verification by GP practices.
i. Understanding the care of patients in nursing homes.
6. Feedback to NHS service providers on data quality at an aggregate and individual record level – only on data initially provided by the service providers.
7. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these.
8. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services and early intervention of appropriate care.
9. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required.
10. Potentially reduced premature mortality by more targeted intervention in primary care, which supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework.
11. Better understanding of the health of and the variations in health outcomes within the population to help understand local population characteristics.
12. Better understanding of contract requirements, contract execution, and required services for management of existing contracts, and to assist with identification and planning of future contracts
13. Insights into patient outcomes, and identification of the possible efficacy of outcomes-based contracting opportunities.
14. Reviewing current service provision
a. Cost-benefit analysis and service impact assessments to underpin service transformation across health economy
b. Service planning and re-design (development of NMoC and integrated care pathways, new partnerships, working with new providers etc.)
c. Impact analysis for different models or productivity measures, efficiency and experience
d. Service and pathway review
e. Service utilisation review
15. Ensuring compliance with evidence and guidance
a. Testing approaches with evidence and compliance with guidance.
16. Monitoring outcomes
a. Analysis of variation in outcomes across population group
17. Understanding how services impact across the health economy
a. Service evaluation
b. Programme reviews
c. Analysis of productivity, outcomes, experience, plan, targets and actuals
d. Assessing value for money and efficiency gains
e. Understanding impact of services on health inequalities
18. Understanding how services impact on the health of the population and patient cohorts
a. Measuring and assessing improvement in service provision, patient experience & outcomes and the cost to achieve this
b. Propensity matching and scoring
c. Triple aim analysis
19. Understanding future drivers for change across health economy
a. Forecasting health and care needs for population and population cohorts across STPs
b. Identifying changes in disease trends and prevalence
c. Efficiencies that can be gained from procuring services across wider footprints, from new innovations
d. Predictive modelling
20. Delivering services that meet changing needs of population
a. Analysis to support policy development
b. Ethical and equality impact assessments
c. Implementation of NMOC
d. What do next years contracts need to include?
e. Workforce planning
21. Maximising services and outcomes within financial envelopes across health economy
a. What-if analysis
b. Cost-benefit analysis
c. Health economics analysis
d. Scenario planning and modelling
e. Investment and disinvestment in services analysis
f. Opportunity analysis
All of the above will lead to improved patient experience through more effective commissioning of services and enable us and our providers to direct our finite health and social care (public health) resources more efficiently and effectively.
Users can better understand variation in their system, and make comparisons between populations and organisations in a fair and meaningful way with a greater understanding of what normal is. This will support routine opportunity analyses that they carry out in order to best target resources and best understand which activities have had a genuine benefit, and helped reduce costs to the system.
In addition, the platform provides access to comprehensive supporting information that commissioning organisations such as Clinical Commissioning Groups use to ensure that the services they commission:
• deliver the best outcomes for their patients
• cater for and meet the needs of the population they are responsible for;
• monitor condition prevalence within the population
• identify health inequalities and work with local organisations and agencies to remove them

Outputs:

Commissioning
1. Commissioner reporting:
a. Summary by provider view - plan & actuals year to date (YTD).
b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD.
c. Summary by provider view - activity & finance variance by POD.
d. Planned care by provider view - activity & finance plan & actuals YTD.
e. Planned care by POD view - activity plan & actuals YTD.
f. Provider reporting.
g. Statutory returns.
h. Statutory returns - monthly activity return.
i. Statutory returns - quarterly activity return.
j. Delayed discharges.
k. Quality & performance referral to treatment reporting.
2. Readmissions analysis.
3. Production of aggregate reports for CCG Business Intelligence.
4. Production of project / programme level dashboards.
5. Monitoring of acute / community / mental health quality matrix.
6. Clinical coding reviews / audits.
7. Budget reporting down to individual GP Practice level.
8. GP Practice level dashboard reports include high flyers.
9. Comparators of CCG performance with similar CCGs as set out by a specific range of care quality and performance measures detailed activity and cost reports
10. Data Quality and Validation measures allowing data quality checks on the submitted data
11. Contract Management and Modelling
12. Patient Stratification, such as:
a. Patients at highest risk of admission
b. Most expensive patients (top 15%)
c. Frail and elderly
d. Patients that are currently in hospital
e. Patients with most referrals to secondary care
f. Patients with most emergency activity
g. Patients with most expensive prescriptions
h. Patients recently moving from one care setting to another
i. Discharged from hospital
ii. Discharged from community
13. Identifying and managing preventable and existing conditions
a. Identifying types of individuals and population cohorts at risk of non-elective re-admission
b. Risk stratification to identify populations suitable for case management
c. Risk profiling and predictive modelling
d. Risk stratification for planning services for population cohorts
e. Identification of disease incidence and diagnosis stratification
14. Reducing health inequalities
a. Identifying cohorts of patients who have worse health outcomes typically deprived, ethnic groups, homeless, travellers etc. to enable services to proactively target their needs
b. Socio-demographic analysis
15. Managing demand
a. Waiting times analysis
b. Service demand and supply modelling
c. Understanding cross-border and overseas visitor
d. Winter planning
e. Emergency preparedness, business continuity, recovery and contingency planning
16. Care co-ordination and planning
a. Planning packages of care
b. Service planning
c. Planning care co-ordination
17. Monitoring individual patient health, service utilisation, pathway compliance experience & outcomes across the heath and care system
a. Patient pathway analysis across health and care
b. Outcomes & experience analysis
c. Analysis to support services to react to terror situations
d. Analysis to identify vulnerable patients with potential safeguarding issues
e. Understanding equity of care and unwarranted variation
f. Modelling patient flow
g. Tracking patient pathways
h. Monitoring to support NMoC, ACOs, STPs
i. Identifying duplications in care
j. Identifying gaps in care, missed diagnoses and triple fail events
k. Analysing individual and aggregated timelines
18. Undertaking budget planning, management and reporting
a. Tracking financial performance against plans
b. Budget reporting
c. Tariff development
d. Developing and monitoring capitated budgets
e. Developing and monitoring individual-level budgets
f. Future budget planning and forecasting
g. Paying for care of overseas visitors and cross-border flow
19. Monitoring the value for money
a. Service-level costing & comparisons
b. Identification of cost pressures
c. Cost benefit analysis
d. Equity of spend across services and population cohorts
e. Finance impact assessment
20. Comparing population groups, peers, national and international best practice
a. Identification of variation in productivity, cost, outcomes, quality, experience, compared with peers, national and international & best practice
b. Benchmarking against other parts of the country
c. Identifying unwarranted variations
21. Comparing expected levels
a. Standardised comparisons for prevalence, activity, cost, quality, experience, outcomes for given populations
22. Comparing local targets & plan
a. Monitoring of local variation in productivity, cost, outcomes, quality and experience
b. Local performance dashboards by service provider, commissioner, geography, NMOC, STPs
23. Monitoring activity and cost compliance against contract and agreed plans
a. Contract monitoring
b. Contract reconciliation and challenge
24. Monitoring provider quality, demand, experience and outcomes against contract and agreed plans
a. Performance dashboards
b. CQUIN reporting
c. Clinical audit
d. Patient experience surveys
e. Demand, supply, outcome & experience analysis
f. Monitoring cross-border flows and overseas visitor activity
25. Improving provider data quality
a. Coding audit
b. Data quality validation and review
c. Checking validity of patient identity and commissioner assignment
Analytics Insights
Reports, charts and dashboards providing insights into:
1. Comparators of CCG performance with similar CCGs as set out by a specific range of care quality and performance measures detailed activity and cost reports
2. Data Quality and Validation measures allowing data quality checks on the submitted data
3. Contract Management and Modelling
4. Health needs assessment and predictive modelling instead, such as:
o Patients at highest risk of admission
o Most expensive patients (top 15%)
o Frail and elderly
o Patients that are currently in hospital
o Patients with most referrals to secondary care
o Patients with most emergency activity
o Patients with most expensive prescriptions
o Patients recently moving from one care setting to another
i. Discharged from hospital
ii. Discharged from community
5. Understanding impacts and interdependency of care services

Processing:

Data must only be used as stipulated within this Data Sharing Agreement.

Data Processors must only act upon specific instructions from the Data Controller.

Data can only be stored at the addresses listed under storage addresses.

The Data Controller and any Data Processor will only have access to records of patients of residence and registration within the CCG.

Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data.
All access to data is managed under Roles-Based Access Controls

No patient level data will be linked other than as specifically detailed within this agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality of interest of the applicant.
NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data)

Segregation
Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked.
All access to data is audited


Commissioning
The Data Services for Commissioners Regional Office (DSCRO) obtains the following data sets:
1. SUS+
2. Local Provider Flows (received directly from providers)
o Ambulance
o Demand for Service
o Diagnostic Service
o Emergency Care
o Experience, Quality and Outcomes
o Other Not Elsewhere Classified
o Population Data
o Primary Care Services
o Public Health Screening
3. Mental Health Minimum Data Set (MHMDS)
4. Mental Health Learning Disability Data Set (MHLDDS)
5. Mental Health Services Data Set (MHSDS)
6. Maternity Services Data Set (MSDS)
7. Improving Access to Psychological Therapy (IAPT)
8. Child and Young People Health Service (CYPHS)
9. Community Services Data Set (CSDS)
10. Diagnostic Imaging Data Set (DIDS)
11. National Cancer Waiting Times Monitoring Data Set (CWT)

Data Processor 1 – MedeAnalytics
Data quality management and pseudonymisation is completed within the DSCRO using the MedeAnalytics tool specific to the CCG and is then disseminated as follows:
1) Pseudonymised SUS+, Local Provider data, Mental Health data (MHSDS, MHMDS, MHLDDS), Maternity data (MSDS), Improving Access to Psychological Therapies data (IAPT), Child and Young People’s Health data (CYPHS), Community Services Data Set (CSDS), National Cancer Waiting Times Monitoring Data Set (CWT) and Diagnostic Imaging data (DIDS) only is securely transferred from the DSCRO to MedeAnalytics.
2) MedeAnalytics also receives the following pseudonymised data from providers that has been pseudonymised at source using the MedeAnalytics pseudonymisation tool:
o Community Data
o Mental Health Data
o Social Care Data
o GP Data
o Any Qualified Provider data
3) MedeAnalytics add derived fields, link data and provide analysis to:
o See patient journeys for pathways or service design, re-design and de-commissioning
o Check recorded activity against contracts or invoices and facilitate discussions with providers
o Undertake population health management
o Undertake data quality and validation checks
o Thoroughly investigate the needs of the population
o Understand cohorts of residents who are at risk
o Conduct Health Needs Assessments
4) Allowed linkage is between the data sets contained within point 1 and point 2 only.
5) MedeAnalytics then pass the processed, pseudonymised and linked data to the CCG.
6) Aggregation of required data for CCG management use will be completed by MedeAnalytics or the CCG as instructed by the CCG.
7) Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set.
8) MedeAnalytics also pass pseudonymised SUS+ and GP data to Optum Health Solutions.

Data Processor 2 – Optum Health Solutions
9) Optum Health Solutions provide analysis to
o Data integration
o Undertake population health management
10) Aggregation of data is completed by Optum Health Solutions.
11) Patient level data will not be shared outside of Optum Health Solutions and will only be shared within Optum Health Solutions on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set

For clarity: Optum require data for our more transformational Public Health facing tools such as Health Population Manager whereas MedeAnalytics will be dealing with the day to day more transactional (SUS, SLAM, MH, Community…) data feeds required for contracting and commissioning purposes.
MedeAnalytics outputs only (Direct Care only)
Re-identification (managed under RBAC) requires an additional step to access re-identification keys held by an independent third party key management service that has no access to the data. Disabling a user’s account in the key management system immediately removes the ability of that user to access re-identification keys.
Each Re-identification requires a different key, so inappropriate retention of keys (which is neither allowed, nor easy to accomplish by design) will not result in compromise of data
Only GP Practice users are able to re-identify patients and only when they have a legitimate reason and a legal right to re-identify, and can only access data to which they have rights under RBAC (which is CG/SIRO approved – within the CCG)
All data providers for a particular region (according to contract) are issued with encryption keys that ensure data for their region can only be linked to data from other providers for the same region. This means that data for two different regional customers cannot be accidentally mixed.


Data Processor 3 – NHS South Kent Coast CCG
1. Pseudonymised Mental Health data (MHSDS, MHMDS, MHLDDS), Improving Access to Psychological Therapies data (IAPT), Child and Young People’s Health data (CYPHS) Community Services Data Set (CSDS) and National Cancer Waiting Times Monitoring Data Set (CWT).
only is securely transferred from the DSCRO to NHS South Kent Coast CCG
2. NHS South Kent Coast CCG add derived fields, link data and provide analysis to:
a. See patient journeys for pathways or service design, re-design and de-commissioning.
b. Check recorded activity against contracts or invoices and facilitate discussions with providers.
c. Undertake population health management
d. Undertake data quality and validation checks
e. Thoroughly investigate the needs of the population
f. Understand cohorts of residents who are at risk
g. Conduct Health Needs Assessments
3. Allowed linkage is between the data sets contained within point 1.
4. NHS South Kent Coast CCG then pass the processed, pseudonymised and linked data to the CCG.
5. Aggregation of required data for CCG management use will be completed by NHS South Kent Coast CCG or the CCG as instructed by the CCG.
6. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set.


DSfC - NHS South Kent Coast CCG; IV and Comm. — DARS-NIC-155254-Y1H0S

Opt outs honoured: N, Y, No - data flow is not identifiable, Yes - patient objections upheld, Anonymised - ICO Code Compliant, Identifiable (Section 251, Section 251 NHS Act 2006)

Legal basis: Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Section 251 approval is in place for the flow of identifiable data, National Health Service Act 2006 - s251 - 'Control of patient information'. , Health and Social Care Act 2012 – s261(7), Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Health and Social Care Act 2012 – s261(7), Health and Social Care Act 2012 – s261(2)(b)(ii)

Purposes: No (Clinical Commissioning Group (CCG), Sub ICB Location)

Sensitive: Sensitive

When:DSA runs 2019-09-01 — 2022-08-31 2018.06 — 2020.03.

Access method: Frequent adhoc flow, Frequent Adhoc Flow

Data-controller type: NHS KENT AND MEDWAY CCG, NHS KENT AND MEDWAY ICB - 91Q

Sublicensing allowed: No

Datasets:

  1. Acute-Local Provider Flows
  2. Ambulance-Local Provider Flows
  3. Children and Young People Health
  4. Community Services Data Set
  5. Community-Local Provider Flows
  6. Demand for Service-Local Provider Flows
  7. Diagnostic Imaging Dataset
  8. Diagnostic Services-Local Provider Flows
  9. Emergency Care-Local Provider Flows
  10. Experience, Quality and Outcomes-Local Provider Flows
  11. Improving Access to Psychological Therapies Data Set
  12. Maternity Services Data Set
  13. Mental Health and Learning Disabilities Data Set
  14. Mental Health Minimum Data Set
  15. Mental Health Services Data Set
  16. National Cancer Waiting Times Monitoring DataSet (CWT)
  17. Other Not Elsewhere Classified (NEC)-Local Provider Flows
  18. Population Data-Local Provider Flows
  19. Primary Care Services-Local Provider Flows
  20. Public Health and Screening Services-Local Provider Flows
  21. SUS for Commissioners
  22. Civil Registration - Births
  23. Civil Registration - Deaths
  24. National Diabetes Audit
  25. Patient Reported Outcome Measures
  26. National Cancer Waiting Times Monitoring DataSet (NCWTMDS)
  27. Improving Access to Psychological Therapies Data Set_v1.5

Objectives:

Invoice Validation

Invoice validation is part of a process by which providers of care or services get paid for the work they do.
Invoices are submitted to the Clinical Commissioning Group (CCG) so they are able to ensure that the activity claimed for each patient is their responsibility. This is done by processing and analysing Secondary User Services (SUS+) data, which is received into a secure Controlled Environment for Finance (CEfF). The SUS+ data is identifiable at the level of NHS number. The NHS number is only used to confirm the accuracy of backing-data sets and will not be used further.

Invoice Validation with be conducted by Optum
The CCG are advised by Optum whether payment for invoices can be made or not.

Commissioning

To use pseudonymised data to provide intelligence to support the commissioning of health services. The data (containing both clinical and financial information) is analysed so that health care provision can be planned to support the needs of the population within the CCG area.
The CCGs commission services from a range of providers covering a wide array of services. Each of the data flow categories requested supports the commissioned activity of one or more providers.
The following pseudonymised datasets are required to provide intelligence to support commissioning of health services:
- Secondary Uses Service (SUS+)
- Local Provider Flows
o Acute
o Ambulance
o Community
o Demand for Service
o Diagnostic Service
o Emergency Care
o Experience, Quality and Outcomes
o Mental Health
o Other Not Elsewhere Classified
o Population Data
o Primary Care Services
o Public Health Screening
- Mental Health Minimum Data Set (MHMDS)
- Mental Health Learning Disability Data Set (MHLDDS)
- Mental Health Services Data Set (MHSDS)
- Maternity Services Data Set (MSDS)
- Improving Access to Psychological Therapy (IAPT)
- Child and Young People Health Service (CYPHS)
- Community Services Data Set (CSDS)
- Diagnostic Imaging Data Set (DIDS)
- National Cancer Waiting Times Monitoring Data Set (CWT)
The pseudonymised data is required to for the following purposes:
§ Population health management:
• Understanding the interdependency of care services
• Targeting care more effectively
• Using value as the redesign principle
§ Data Quality and Validation – allowing data quality checks on the submitted data
§ Thoroughly investigating the needs of the population, to ensure the right services are available for individuals when and where they need them
§ Understanding cohorts of residents who are at risk of becoming users of some of the more expensive services, to better understand and manage those needs
§ Monitoring population health and care interactions to understand where people may slip through the net, or where the provision of care may be being duplicated
§ Modelling activity across all data sets to understand how services interact with each other, and to understand how changes in one service may affect flows through another
§ Service redesign
§ Health Needs Assessment – identification of underlying disease prevalence within the local population
§ Patient stratification and predictive modelling - to identify specific patients at risk of requiring hospital admission and other avoidable factors such as risk of falls, computed using algorithms executed against linked de-identified data, and identification of future service delivery models

The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets.
Processing for commissioning will be conducted by MedeAnalytics and Optum

South Kent Coast CCG will also be doing the below:

The CCG has a statutory responsibility to monitor, evaluate and review the delivery and quality of commissioned services as per Health and Social Care Act 2012 for commissioning purposes, The CCGs uses the IAPT, CYPHS and Mental Health data sets to evaluate access and compliance with NHS constitution targets. The data is used to review longitudinal access data to ensure sufficient capacity and activity is commissioned. No patient identifiable data is requested.
Commissioning (Pseudonymised) – Mental Health and IAPT
To use pseudonymised data for the following datasets to provide intelligence to support commissioning of health services :
- Mental Health Minimum Data Set (MHMDS)
- Mental Health Learning Disability Data Set (MHLDDS)
- Mental Health Services Data Set (MHSDS)
- Improving Access to Psychological Therapy (IAPT)
- Children and Young People Services (CYPHS)
The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets.
The CCG will only have access to records of its own CCG. The Data processor will have access to the records of the CCGs for which it is carrying out data processing. Access is limited to those substantive employees of the data controller as well as data processor with authorised user accounts used for identification and authorisation.No record level data will be linked other than as specifically detailed within this application/agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality of interest of South Kent Coast CCG.

Yielded Benefits:

Expected Benefits:

Invoice Validation

1. Financial validation of activity
2. CCG Budget control
3. Commissioning and performance management
4. Meeting commissioning objectives without compromising patient confidentiality
5. The avoidance of misappropriation of public funds to ensure the ongoing delivery of patient care


Commissioning

1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, integrated care and pathways.
a. Analysis to support full business cases.
b. Develop business models.
c. Monitor In year projects.
2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types.
3. Health economic modelling using:
a. Analysis on provider performance against 18 weeks wait targets.
b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients.
c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway.
d. Analysis to understand emergency care and linking A&E and Emergency Urgent Care Flows (EUCC).
4. Commissioning cycle support for grouping and re-costing previous activity.
5. Enables monitoring of:
a. CCG outcome indicators.
b. Financial and Non-financial validation of activity.
c. Successful delivery of integrated care within the CCG.
d. Checking frequent or multiple attendances to improve early intervention and avoid admissions.
e. Case management.
f. Care service planning.
g. Commissioning and performance management.
h. List size verification by GP practices.
i. Understanding the care of patients in nursing homes.
6. Feedback to NHS service providers on data quality at an aggregate and individual record level – only on data initially provided by the service providers.
7. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these.
8. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services and early intervention of appropriate care.
9. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required.
10. Potentially reduced premature mortality by more targeted intervention in primary care, which supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework.
11. Better understanding of the health of and the variations in health outcomes within the population to help understand local population characteristics.
12. Better understanding of contract requirements, contract execution, and required services for management of existing contracts, and to assist with identification and planning of future contracts
13. Insights into patient outcomes, and identification of the possible efficacy of outcomes-based contracting opportunities.
14. Reviewing current service provision
a. Cost-benefit analysis and service impact assessments to underpin service transformation across health economy
b. Service planning and re-design (development of NMoC and integrated care pathways, new partnerships, working with new providers etc.)
c. Impact analysis for different models or productivity measures, efficiency and experience
d. Service and pathway review
e. Service utilisation review
15. Ensuring compliance with evidence and guidance
a. Testing approaches with evidence and compliance with guidance.
16. Monitoring outcomes
a. Analysis of variation in outcomes across population group
17. Understanding how services impact across the health economy
a. Service evaluation
b. Programme reviews
c. Analysis of productivity, outcomes, experience, plan, targets and actuals
d. Assessing value for money and efficiency gains
e. Understanding impact of services on health inequalities
18. Understanding how services impact on the health of the population and patient cohorts
a. Measuring and assessing improvement in service provision, patient experience & outcomes and the cost to achieve this
b. Propensity matching and scoring
c. Triple aim analysis
19. Understanding future drivers for change across health economy
a. Forecasting health and care needs for population and population cohorts across STPs
b. Identifying changes in disease trends and prevalence
c. Efficiencies that can be gained from procuring services across wider footprints, from new innovations
d. Predictive modelling
20. Delivering services that meet changing needs of population
a. Analysis to support policy development
b. Ethical and equality impact assessments
c. Implementation of NMOC
d. What do next years contracts need to include?
e. Workforce planning
21. Maximising services and outcomes within financial envelopes across health economy
a. What-if analysis
b. Cost-benefit analysis
c. Health economics analysis
d. Scenario planning and modelling
e. Investment and disinvestment in services analysis
f. Opportunity analysis
All of the above will lead to improved patient experience through more effective commissioning of services and enable us and our providers to direct our finite health and social care (public health) resources more efficiently and effectively.
Users can better understand variation in their system, and make comparisons between populations and organisations in a fair and meaningful way with a greater understanding of what normal is. This will support routine opportunity analyses that they carry out in order to best target resources and best understand which activities have had a genuine benefit, and helped reduce costs to the system.
In addition, the platform provides access to comprehensive supporting information that commissioning organisations such as Clinical Commissioning Groups use to ensure that the services they commission:
• deliver the best outcomes for their patients
• cater for and meet the needs of the population they are responsible for;
• monitor condition prevalence within the population
• identify health inequalities and work with local organisations and agencies to remove them

Outputs:

Invoice Validation
1. Addressing poor data quality issues
2. Production of reports for business intelligence
3. Budget reporting
4. Validation of invoices for non-contracted events

Commissioning

1. Commissioner reporting:
a. Summary by provider view - plan & actuals year to date (YTD).
b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD.
c. Summary by provider view - activity & finance variance by POD.
d. Planned care by provider view - activity & finance plan & actuals YTD.
e. Planned care by POD view - activity plan & actuals YTD.
f. Provider reporting.
g. Statutory returns.
h. Statutory returns - monthly activity return.
i. Statutory returns - quarterly activity return.
j. Delayed discharges.
k. Quality & performance referral to treatment reporting.
2. Readmissions analysis.
3. Production of aggregate reports for CCG Business Intelligence.
4. Production of project / programme level dashboards.
5. Monitoring of acute / community / mental health quality matrix.
6. Clinical coding reviews / audits.
7. Budget reporting down to individual GP Practice level.
8. GP Practice level dashboard reports include high flyers.
9. Comparators of CCG performance with similar CCGs as set out by a specific range of care quality and performance measures detailed activity and cost reports
10. Data Quality and Validation measures allowing data quality checks on the submitted data
11. Contract Management and Modelling
12. Patient Stratification, such as:
a. Patients at highest risk of admission
b. Most expensive patients (top 15%)
c. Frail and elderly
d. Patients that are currently in hospital
e. Patients with most referrals to secondary care
f. Patients with most emergency activity
g. Patients with most expensive prescriptions
h. Patients recently moving from one care setting to another
i. Discharged from hospital
ii. Discharged from community
13. Identifying and managing preventable and existing conditions
a. Identifying types of individuals and population cohorts at risk of non-elective re-admission
b. Risk stratification to identify populations suitable for case management
c. Risk profiling and predictive modelling
d. Risk stratification for planning services for population cohorts
e. Identification of disease incidence and diagnosis stratification
14. Reducing health inequalities
a. Identifying cohorts of patients who have worse health outcomes typically deprived, ethnic groups, homeless, travellers etc. to enable services to proactively target their needs
b. Socio-demographic analysis
15. Managing demand
a. Waiting times analysis
b. Service demand and supply modelling
c. Understanding cross-border and overseas visitor
d. Winter planning
e. Emergency preparedness, business continuity, recovery and contingency planning
16. Care co-ordination and planning
a. Planning packages of care
b. Service planning
c. Planning care co-ordination
17. Monitoring individual patient health, service utilisation, pathway compliance experience & outcomes across the heath and care system
a. Patient pathway analysis across health and care
b. Outcomes & experience analysis
c. Analysis to support services to react to terror situations
d. Analysis to identify vulnerable patients with potential safeguarding issues
e. Understanding equity of care and unwarranted variation
f. Modelling patient flow
g. Tracking patient pathways
h. Monitoring to support NMoC, ACOs, STPs
i. Identifying duplications in care
j. Identifying gaps in care, missed diagnoses and triple fail events
k. Analysing individual and aggregated timelines
18. Undertaking budget planning, management and reporting
a. Tracking financial performance against plans
b. Budget reporting
c. Tariff development
d. Developing and monitoring capitated budgets
e. Developing and monitoring individual-level budgets
f. Future budget planning and forecasting
g. Paying for care of overseas visitors and cross-border flow
19. Monitoring the value for money
a. Service-level costing & comparisons
b. Identification of cost pressures
c. Cost benefit analysis
d. Equity of spend across services and population cohorts
e. Finance impact assessment
20. Comparing population groups, peers, national and international best practice
a. Identification of variation in productivity, cost, outcomes, quality, experience, compared with peers, national and international & best practice
b. Benchmarking against other parts of the country
c. Identifying unwarranted variations
21. Comparing expected levels
a. Standardised comparisons for prevalence, activity, cost, quality, experience, outcomes for given populations
22. Comparing local targets & plan
a. Monitoring of local variation in productivity, cost, outcomes, quality and experience
b. Local performance dashboards by service provider, commissioner, geography, NMOC, STPs
23. Monitoring activity and cost compliance against contract and agreed plans
a. Contract monitoring
b. Contract reconciliation and challenge
24. Monitoring provider quality, demand, experience and outcomes against contract and agreed plans
a. Performance dashboards
b. CQUIN reporting
c. Clinical audit
d. Patient experience surveys
e. Demand, supply, outcome & experience analysis
f. Monitoring cross-border flows and overseas visitor activity
25. Improving provider data quality
a. Coding audit
b. Data quality validation and review
c. Checking validity of patient identity and commissioner assignment
Analytics Insights
Reports, charts and dashboards providing insights into:
1. Comparators of CCG performance with similar CCGs as set out by a specific range of care quality and performance measures detailed activity and cost reports
2. Data Quality and Validation measures allowing data quality checks on the submitted data
3. Contract Management and Modelling
4. Health needs assessment and predictive modelling instead, such as:
o Patients at highest risk of admission
o Most expensive patients (top 15%)
o Frail and elderly
o Patients that are currently in hospital
o Patients with most referrals to secondary care
o Patients with most emergency activity
o Patients with most expensive prescriptions
o Patients recently moving from one care setting to another
i. Discharged from hospital
ii. Discharged from community
5. Understanding impacts and interdependency of care services

Processing:

Data must only be used as stipulated within this Data Sharing Agreement.

Data Processors must only act upon specific instructions from the Data Controller.

Data can only be stored at the addresses listed under storage addresses.

Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data.

All access to data is managed under Roles-Based Access Controls

No patient level data will be linked other than as specifically detailed within this agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality and that data required by the applicant.

NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data)



Segregation
Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked.

All access to data is auditable by NHS Digital.

Data for the purpose of Invoice Validation is kept within the CEfF, and only used by staff properly trained and authorised for the activity. Only CEfF staff are able to access data in the CEfF and only CEfF staff operate the invoice validation process within the CEfF. Data flows directly in to the CEfF from the DSCRO and from the providers – it does not flow through any other processors.

Data Minimisation
Data Minimisation in relation to the data sets listed within section 3 are listed below. This also includes the purpose on which they would be applied -

For the purpose of Commissioning:
• Patients who are normally registered and/or resident within the commissioner (including historical activity where the patient was previously registered or resident in another commissioner).
and/or
• Patients treated by a provider where the commissioner is the host/co-ordinating commissioner and/or has the primary responsibility for the provider services in the local health economy – this is only for commissioning and relates to both national and local flows.
and/or
• Activity identified by the provider and recorded as such within national systems (such as SUS+) as for the attention of the commissioner - this is only for commissioning and relates to both national and local flows.

For the purpose of Invoice Validation:
• CCG of residence and/or registration.

The above relates to data requested only (Table 3B). Data currently held (Table 3A) will have the following Data Minimisation:
• CCG of residence and/or registration.

Invoice Validation

1. Identifiable SUS+ Data is obtained from the SUS+ Repository to the Data Services for Commissioners Regional Office (DSCRO).
2. The DSCRO pushes a one-way data flow of SUS+ data into the Controlled Environment for Finance (CEfF) in the Optum.
3. Optum carry out the following processing activities within the CEfF for invoice validation purposes:
a. Validating that the Clinical Commissioning Group is responsible for payment for the care of the individual by using SUS+ and/or backing flow data.
b. Once the backing information is received, this will be checked against national NHS and local commissioning policies as well as being checked against system access and reports provided by NHS Digital to confirm the payments are:
i. In line with Payment by Results tariffs
ii. are in relation to a patient registered with a CCG GP or resident within the CCG area.
iii. The health care provided should be paid by the CCG in line with CCG guidance. 
4. The CCG are notified that the invoice has been validated and can be paid. Any discrepancies or non-validated invoices are investigated and resolved between optum CEfF team and the provider meaning that no identifiable data needs to be sent to the CCG. The CCG only receives notification to pay and management reporting detailing the total quantum of invoices received pending, processed etc.


The Data Services for Commissioners Regional Office (DSCRO) obtains the following data sets:
1. SUS+
2. Local Provider Flows (received directly from providers)
a. Acute
b. Ambulance
c. Community
d. Demand for Service
e. Diagnostic Service
f. Emergency Care
g. Experience, Quality and Outcomes
h. Mental Health
i. Other Not Elsewhere Classified
j. Population Data
k. Primary Care Services
l. Public Health Screening
3. Mental Health Minimum Data Set (MHMDS)
4. Mental Health Learning Disability Data Set (MHLDDS)
5. Mental Health Services Data Set (MHSDS)
6. Maternity Services Data Set (MSDS)
7. Improving Access to Psychological Therapy (IAPT)
8. Child and Young People Health Service (CYPHS)
9. Community Services Data Set (CSDS)
10. Diagnostic Imaging Data Set (DIDS)
11. National Cancer Waiting Times Monitoring Data Set (CWT)

Data quality management and pseudonymisation is completed within the DSCRO using the MedeAnalytics tool specific to the CCG and is then disseminated as follows:

Data Processor 1 – MedeAnalytics

Data quality management and pseudonymisation is completed within the DSCRO using the MedeAnalytics tool specific to the CCG and is then disseminated as follows:
1. Pseudonymised SUS+, Local Provider data, Mental Health data (MHSDS, MHMDS, MHLDDS), Maternity data (MSDS), Improving Access to Psychological Therapies data (IAPT), Child and Young People’s Health data (CYPHS), Community Services Data Set (CSDS). Diagnostic Imaging data (DIDS) and National Cancer Waiting Times Monitoring Data Set (CWT) only is securely transferred from the DSCRO to MedeAnalytics.
2. MedeAnalytics also receives the following pseudonymised data from providers that has been pseudonymised at source using the MedeAnalytics pseudonymisation tool:
o Community Data
o Mental Health Data
o Social Care Data
o GP Data
o Any Qualified Provider data
3. MedeAnalytics add derived fields, link data and provide analysis to:
a. See patient journeys for pathways or service design, re-design and de-commissioning.
b. Check recorded activity against contracts or invoices and facilitate discussions with providers.
c. Undertake population health management
d. Undertake data quality and validation checks
e. Thoroughly investigate the needs of the population
f. Understand cohorts of residents who are at risk
g. Conduct Health Needs Assessments
4. Allowed linkage is between the data sets contained within point 1 and point 2 only.
5. MedeAnalytics then pass the processed, pseudonymised and linked data to the CCG.
6. Aggregation of required data for CCG management use will be completed by MedeAnalytics or the CCG as instructed by the CCG.
7. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set.
8. MedeAnalytics also pass pseudonymised SUS+ and GP data to Optum Health Solutions.

Data Processor 2 – Optum Health Solutions

9. Optum Health Solutions provide analysis to
o Data integration
o Undertake population health management
10. Aggregation of data is completed by Optum Health Solutions.
11. Patient level data will not be shared outside of Optum Health Solutions and will only be shared within Optum Health Solutions on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set

For clarity: Optum require data for our more transformational Public Health facing tools such as Health Population Manager whereas MedeAnalytics will be dealing with the day to day more transactional (SUS, SLAM, MH, Community…) data feeds required for contracting and commissioning purposes.
MedeAnalytics outputs only (Direct Care only)
Re-identification (managed under RBAC) requires an additional step to access re-identification keys held by an independent third party key management service that has no access to the data. Disabling a user’s account in the key management system immediately removes the ability of that user to access re-identification keys.
Each Re-identification requires a different key, so inappropriate retention of keys (which is neither allowed, nor easy to accomplish by design) will not result in compromise of data
Only GP Practice users are able to re-identify patients and only when they have a legitimate reason and a legal right to re-identify, and can only access data to which they have rights under RBAC (which is CG/SIRO approved – within the CCG)
All data providers for a particular region (according to contract) are issued with encryption keys that ensure data for their region can only be linked to data from other providers for the same region. This means that data for two different regional customers cannot be accidentally mixed.

Data Processor 3 - South Kent Coast CCG

Commissioning

1. The Data Services for Commissioners Regional Office (DSCRO) obtains a flow of data identifiable at the level of NHS number for Mental Health (MHSDS, MHMDS, MHLDDS), Maternity (MSDS), National Cancer Waiting Times (NCWT), Improving Access to Psychological Therapies (IAPT), Child and Young People’s Health (CYPHS) and Community Services Dataset (CSDS) for commissioning purposes.
2. Data quality management and pseudonymisation of data is completed by the DSCRO and the pseudonymised data is then passed securely to South Kent Coast CCG as Data Processor. The data will be held on a secure drive with access limited to one substantive member of staff who analyses the data, specifically long term physical conditions, cluster coding and outcomes, to see patient journeys for pathway or service design, re-design and de-commissioning.
3. Aggregated reports only with NHS approved disclosure control applied are shared with by South Kent Coast CCG to the Data Controller


DSfC - NHS Swale CCG; Comm. — DARS-NIC-155197-S3L3V

Opt outs honoured: No - data flow is not identifiable, Anonymised - ICO Code Compliant (Section 251, Does not include the flow of confidential data)

Legal basis: Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Health and Social Care Act 2012 – s261(2)(b)(ii)

Purposes: No (Clinical Commissioning Group (CCG), Sub ICB Location)

Sensitive: Sensitive, and Non Sensitive, and Non-Sensitive

When:DSA runs 2019-01-25 — 2020-01-24 2018.06 — 2020.03.

Access method: Frequent adhoc flow, Frequent Adhoc Flow

Data-controller type: NHS KENT AND MEDWAY CCG, NHS KENT AND MEDWAY ICB - 91Q

Sublicensing allowed: No

Datasets:

  1. Acute-Local Provider Flows
  2. Ambulance-Local Provider Flows
  3. Children and Young People Health
  4. Community Services Data Set
  5. Community-Local Provider Flows
  6. Demand for Service-Local Provider Flows
  7. Diagnostic Imaging Dataset
  8. Diagnostic Services-Local Provider Flows
  9. Emergency Care-Local Provider Flows
  10. Experience, Quality and Outcomes-Local Provider Flows
  11. Improving Access to Psychological Therapies Data Set
  12. Maternity Services Data Set
  13. Mental Health and Learning Disabilities Data Set
  14. Mental Health Minimum Data Set
  15. Mental Health Services Data Set
  16. Other Not Elsewhere Classified (NEC)-Local Provider Flows
  17. Population Data-Local Provider Flows
  18. Primary Care Services-Local Provider Flows
  19. Public Health and Screening Services-Local Provider Flows
  20. SUS for Commissioners
  21. National Cancer Waiting Times Monitoring DataSet (CWT)
  22. Civil Registration - Births
  23. Civil Registration - Deaths
  24. Mental Health-Local Provider Flows
  25. National Diabetes Audit
  26. Patient Reported Outcome Measures
  27. National Cancer Waiting Times Monitoring DataSet (NCWTMDS)
  28. Improving Access to Psychological Therapies Data Set_v1.5

Objectives:

This is an application for the following purposes:
Commissioning
To use pseudonymised data to provide intelligence to support the commissioning of health services. The data (containing both clinical and financial information) is analysed so that health care provision can be planned to support the needs of the population within the CCG area.
The CCGs commission services from a range of providers covering a wide array of services. Each of the data flow categories requested supports the commissioned activity of one or more providers.
The following pseudonymised datasets are required to provide intelligence to support commissioning of health services:
- Secondary Uses Service (SUS+)
- Local Provider Flows
o Acute
o Ambulance
o Demand for Service
o Diagnostic Service
o Emergency Care
o Experience, Quality and Outcomes
o Other Not Elsewhere Classified
o Population Data
o Primary Care Services
o Public Health Screening
- Mental Health Minimum Data Set (MHMDS)
- Mental Health Learning Disability Data Set (MHLDDS)
- Mental Health Services Data Set (MHSDS)
- Maternity Services Data Set (MSDS)
- Improving Access to Psychological Therapy (IAPT)
- Child and Young People Health Service (CYPHS)
- Community Services Data Set (CSDS)
- Diagnostic Imaging Data Set (DIDS)
The pseudonymised data is required to for the following purposes:
§ Population health management:
• Understanding the interdependency of care services
• Targeting care more effectively
• Using value as the redesign principle
• Ensuring we do what we should
§ Data Quality and Validation – allowing data quality checks on the submitted data
§ Thoroughly investigating the needs of the population, to ensure the right services are available for individuals when and where they need them
§ Understanding cohorts of residents who are at risk of becoming users of some of the more expensive services, to better understand and manage those needs
§ Monitoring population health and care interactions to understand where people may slip through the net, or where the provision of care may be being duplicated
§ Modelling activity across all data sets to understand how services interact with each other, and to understand how changes in one service may affect flows through another
§ Service redesign
§ Health Needs Assessment – identification of underlying disease prevalence within the local population
§ Patient stratification and predictive modelling - to identify specific patients at risk of requiring hospital admission and other avoidable factors such as risk of falls, computed using algorithms executed against linked de-identified data, and identification of future service delivery models

The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets.
Processing for commissioning will be conducted by:
- MedeAnalytics and Optum Health Solutions

Yielded Benefits:

As of Contract Month 7 (October 2018), year end forecast QIPP delivery: £3.3m Cost avoidance: £0.085m A number of Initial Viability Assessments and Business Cases were presented at the CCG Programme Delivery Steering Group. Development of Local Care plans. Kent wide strategic planning for reconfiguration of stroke services in progress. Analysis of performance against 18 weeks targets and reconfiguration of Ophthalmology and Dermatology services. Analysis for redesign and procurement of Urgent Treatment Centre. Review of service changes linked to unscheduled care pathways related to Ambulatory Emergency Care. Review of counting and coding changes. Beginning of roll-out of Multi Disciplinary teams in primary care that review patients with multiple long term conditions and frequent users of healthcare services for better care planning. Improvements in understanding of contract requirements, contract execution, and required services for management of existing contracts, and to assist with identification and planning of future contracts. Compliance with NHSE guidance around planning and in-year monitoring. Forecasting health and care needs for population and population cohorts across Kent and Medway STP Evidence basis for investment and disinvestment decisions.

Expected Benefits:

Commissioning
1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, integrated care and pathways.
a. Analysis to support full business cases.
b. Develop business models.
c. Monitor In year projects.
2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types.
3. Health economic modelling using:
a. Analysis on provider performance against 18 weeks wait targets.
b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients.
c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway.
d. Analysis to understand emergency care and linking A&E and Emergency Urgent Care Flows (EUCC).
4. Commissioning cycle support for grouping and re-costing previous activity.
5. Enables monitoring of:
a. CCG outcome indicators.
b. Financial and Non-financial validation of activity.
c. Successful delivery of integrated care within the CCG.
d. Checking frequent or multiple attendances to improve early intervention and avoid admissions.
e. Case management.
f. Care service planning.
g. Commissioning and performance management.
h. List size verification by GP practices.
i. Understanding the care of patients in nursing homes.
6. Feedback to NHS service providers on data quality at an aggregate and individual record level – only on data initially provided by the service providers.
7. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these.
8. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services and early intervention of appropriate care.
9. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required.
10. Potentially reduced premature mortality by more targeted intervention in primary care, which supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework.
11. Better understanding of the health of and the variations in health outcomes within the population to help understand local population characteristics.
12. Better understanding of contract requirements, contract execution, and required services for management of existing contracts, and to assist with identification and planning of future contracts
13. Insights into patient outcomes, and identification of the possible efficacy of outcomes-based contracting opportunities.
14. Reviewing current service provision
a. Cost-benefit analysis and service impact assessments to underpin service transformation across health economy
b. Service planning and re-design (development of NMoC and integrated care pathways, new partnerships, working with new providers etc.)
c. Impact analysis for different models or productivity measures, efficiency and experience
d. Service and pathway review
e. Service utilisation review
15. Ensuring compliance with evidence and guidance
a. Testing approaches with evidence and compliance with guidance.
16. Monitoring outcomes
a. Analysis of variation in outcomes across population group
17. Understanding how services impact across the health economy
a. Service evaluation
b. Programme reviews
c. Analysis of productivity, outcomes, experience, plan, targets and actuals
d. Assessing value for money and efficiency gains
e. Understanding impact of services on health inequalities
18. Understanding how services impact on the health of the population and patient cohorts
a. Measuring and assessing improvement in service provision, patient experience & outcomes and the cost to achieve this
b. Propensity matching and scoring
c. Triple aim analysis
19. Understanding future drivers for change across health economy
a. Forecasting health and care needs for population and population cohorts across STPs
b. Identifying changes in disease trends and prevalence
c. Efficiencies that can be gained from procuring services across wider footprints, from new innovations
d. Predictive modelling
20. Delivering services that meet changing needs of population
a. Analysis to support policy development
b. Ethical and equality impact assessments
c. Implementation of NMOC
d. What do next years contracts need to include?
e. Workforce planning
21. Maximising services and outcomes within financial envelopes across health economy
a. What-if analysis
b. Cost-benefit analysis
c. Health economics analysis
d. Scenario planning and modelling
e. Investment and disinvestment in services analysis
f. Opportunity analysis
All of the above will lead to improved patient experience through more effective commissioning of services and enable us and our providers to direct our finite health and social care (public health) resources more efficiently and effectively.
Users can better understand variation in their system, and make comparisons between populations and organisations in a fair and meaningful way with a greater understanding of what normal is. This will support routine opportunity analyses that they carry out in order to best target resources and best understand which activities have had a genuine benefit, and helped reduce costs to the system.
In addition, the platform provides access to comprehensive supporting information that commissioning organisations such as Clinical Commissioning Groups use to ensure that the services they commission:
• deliver the best outcomes for their patients
• cater for and meet the needs of the population they are responsible for;
• monitor condition prevalence within the population
• identify health inequalities and work with local organisations and agencies to remove them

Outputs:

Commissioning
1. Commissioner reporting:
a. Summary by provider view - plan & actuals year to date (YTD).
b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD.
c. Summary by provider view - activity & finance variance by POD.
d. Planned care by provider view - activity & finance plan & actuals YTD.
e. Planned care by POD view - activity plan & actuals YTD.
f. Provider reporting.
g. Statutory returns.
h. Statutory returns - monthly activity return.
i. Statutory returns - quarterly activity return.
j. Delayed discharges.
k. Quality & performance referral to treatment reporting.
2. Readmissions analysis.
3. Production of aggregate reports for CCG Business Intelligence.
4. Production of project / programme level dashboards.
5. Monitoring of acute / community / mental health quality matrix.
6. Clinical coding reviews / audits.
7. Budget reporting down to individual GP Practice level.
8. GP Practice level dashboard reports include high flyers.
9. Comparators of CCG performance with similar CCGs as set out by a specific range of care quality and performance measures detailed activity and cost reports
10. Data Quality and Validation measures allowing data quality checks on the submitted data
11. Contract Management and Modelling
12. Patient Stratification, such as:
a. Patients at highest risk of admission
b. Most expensive patients (top 15%)
c. Frail and elderly
d. Patients that are currently in hospital
e. Patients with most referrals to secondary care
f. Patients with most emergency activity
g. Patients with most expensive prescriptions
h. Patients recently moving from one care setting to another
i. Discharged from hospital
ii. Discharged from community
13. Identifying and managing preventable and existing conditions
a. Identifying types of individuals and population cohorts at risk of non-elective re-admission
b. Risk stratification to identify populations suitable for case management
c. Risk profiling and predictive modelling
d. Risk stratification for planning services for population cohorts
e. Identification of disease incidence and diagnosis stratification
14. Reducing health inequalities
a. Identifying cohorts of patients who have worse health outcomes typically deprived, ethnic groups, homeless, travellers etc. to enable services to proactively target their needs
b. Socio-demographic analysis
15. Managing demand
a. Waiting times analysis
b. Service demand and supply modelling
c. Understanding cross-border and overseas visitor
d. Winter planning
e. Emergency preparedness, business continuity, recovery and contingency planning
16. Care co-ordination and planning
a. Planning packages of care
b. Service planning
c. Planning care co-ordination
17. Monitoring individual patient health, service utilisation, pathway compliance experience & outcomes across the heath and care system
a. Patient pathway analysis across health and care
b. Outcomes & experience analysis
c. Analysis to support services to react to terror situations
d. Analysis to identify vulnerable patients with potential safeguarding issues
e. Understanding equity of care and unwarranted variation
f. Modelling patient flow
g. Tracking patient pathways
h. Monitoring to support NMoC, ACOs, STPs
i. Identifying duplications in care
j. Identifying gaps in care, missed diagnoses and triple fail events
k. Analysing individual and aggregated timelines
18. Undertaking budget planning, management and reporting
a. Tracking financial performance against plans
b. Budget reporting
c. Tariff development
d. Developing and monitoring capitated budgets
e. Developing and monitoring individual-level budgets
f. Future budget planning and forecasting
g. Paying for care of overseas visitors and cross-border flow
19. Monitoring the value for money
a. Service-level costing & comparisons
b. Identification of cost pressures
c. Cost benefit analysis
d. Equity of spend across services and population cohorts
e. Finance impact assessment
20. Comparing population groups, peers, national and international best practice
a. Identification of variation in productivity, cost, outcomes, quality, experience, compared with peers, national and international & best practice
b. Benchmarking against other parts of the country
c. Identifying unwarranted variations
21. Comparing expected levels
a. Standardised comparisons for prevalence, activity, cost, quality, experience, outcomes for given populations
22. Comparing local targets & plan
a. Monitoring of local variation in productivity, cost, outcomes, quality and experience
b. Local performance dashboards by service provider, commissioner, geography, NMOC, STPs
23. Monitoring activity and cost compliance against contract and agreed plans
a. Contract monitoring
b. Contract reconciliation and challenge
c. Invoice validation
24. Monitoring provider quality, demand, experience and outcomes against contract and agreed plans
a. Performance dashboards
b. CQUIN reporting
c. Clinical audit
d. Patient experience surveys
e. Demand, supply, outcome & experience analysis
f. Monitoring cross-border flows and overseas visitor activity
25. Improving provider data quality
a. Coding audit
b. Data quality validation and review
c. Checking validity of patient identity and commissioner assignment
Analytics Insights
Reports, charts and dashboards providing insights into:
1. Comparators of CCG performance with similar CCGs as set out by a specific range of care quality and performance measures detailed activity and cost reports
2. Data Quality and Validation measures allowing data quality checks on the submitted data
3. Contract Management and Modelling
4. Health needs assessment and predictive modelling instead, such as:
o Patients at highest risk of admission
o Most expensive patients (top 15%)
o Frail and elderly
o Patients that are currently in hospital
o Patients with most referrals to secondary care
o Patients with most emergency activity
o Patients with most expensive prescriptions
o Patients recently moving from one care setting to another
i. Discharged from hospital
ii. Discharged from community
5. Understanding impacts and interdependency of care services

Processing:

Data must only be used as stipulated within this Data Sharing Agreement.

Data Processors must only act upon specific instructions from the Data Controller.

Data can only be stored at the addresses listed under storage addresses.

The Data Controller and any Data Processor will only have access to records of patients of residence and registration within the CCG.

Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data.
All access to data is managed under Roles-Based Access Controls

No patient level data will be linked other than as specifically detailed within this agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality of interest of the applicant.
NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data)
Segregation
Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked.
All access to data is audited

Commissioning
The Data Services for Commissioners Regional Office (DSCRO) obtains the following data sets:
1. SUS+
2. Local Provider Flows (received directly from providers)
o Ambulance
o Demand for Service
o Diagnostic Service
o Emergency Care
o Experience, Quality and Outcomes
o Other Not Elsewhere Classified
o Population Data
o Primary Care Services
o Public Health Screening
3. Mental Health Minimum Data Set (MHMDS)
4. Mental Health Learning Disability Data Set (MHLDDS)
5. Mental Health Services Data Set (MHSDS)
6. Maternity Services Data Set (MSDS)
7. Improving Access to Psychological Therapy (IAPT)
8. Child and Young People Health Service (CYPHS)
9. Community Services Data Set (CSDS)
10. Diagnostic Imaging Data Set (DIDS)

Data Processor 1 – MedeAnalytics
Data quality management and pseudonymisation is completed within the DSCRO using the MedeAnalytics tool specific to the CCG and is then disseminated as follows:
1) Pseudonymised SUS+, Local Provider data, Mental Health data (MHSDS, MHMDS, MHLDDS), Maternity data (MSDS), Improving Access to Psychological Therapies data (IAPT), Child and Young People’s Health data (CYPHS), Community Services Data Set (CSDS) and Diagnostic Imaging data (DIDS) only is securely transferred from the DSCRO to MedeAnalytics.
2) MedeAnalytics also receives the following pseudonymised data from providers that has been pseudonymised at source using the MedeAnalytics pseudonymisation tool:
o Community Data
o Mental Health Data
o Social Care Data
o GP Data
o Any Qualified Provider data
3) MedeAnalytics add derived fields, link data and provide analysis to:
o See patient journeys for pathways or service design, re-design and de-commissioning
o Check recorded activity against contracts or invoices and facilitate discussions with providers
o Undertake population health management
o Undertake data quality and validation checks
o Thoroughly investigate the needs of the population
o Understand cohorts of residents who are at risk
o Conduct Health Needs Assessments
4) Allowed linkage is between the data sets contained within point 1 and point 2 only.
5) MedeAnalytics then pass the processed, pseudonymised and linked data to the CCG.
6) Aggregation of required data for CCG management use will be completed by MedeAnalytics or the CCG as instructed by the CCG.
7) Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set.
8) MedeAnalytics also pass pseudonymised SUS+ and GP data to Optum Health Solutions.

Data Processor 2 – Optum Health Solutions
9) Optum Health Solutions provide analysis to
o Data integration
o Undertake population health management
10) Aggregation of data is completed by Optum Health Solutions.
11) Patient level data will not be shared outside of Optum Health Solutions and will only be shared within Optum Health Solutions on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set.

MedeAnalytics outputs only (Direct Care only)
Re-identification (managed under RBAC) requires an additional step to access re-identification keys held by an independent third party key management service that has no access to the data. Disabling a user’s account in the key management system immediately removes the ability of that user to access re-identification keys.
Each Re-identification requires a different key, so inappropriate retention of keys (which is neither allowed, nor easy to accomplish by design) will not result in compromise of data
Only GP Practice users are able to re-identify patients and only when they have a legitimate reason and a legal right to re-identify, and can only access data to which they have rights under RBAC (which is CG/SIRO approved – within the CCG)
All data providers for a particular region (according to contract) are issued with encryption keys that ensure data for their region can only be linked to data from other providers for the same region. This means that data for two different regional customers cannot be accidentally mixed.
For clarity: Optum require data for our more transformational Public Health facing tools such as Health Population Manager whereas MedeAnalytics will be dealing with the day to day more transactional (SUS, SLAM, MH, Community…) data feeds required for contracting and commissioning purposes.


DSfC - NHS Medway CCG; Comm. — DARS-NIC-155188-V0V7L

Opt outs honoured: No - data flow is not identifiable, Anonymised - ICO Code Compliant (Section 251, Does not include the flow of confidential data)

Legal basis: Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Health and Social Care Act 2012 – s261(2)(b)(ii)

Purposes: No (Clinical Commissioning Group (CCG), Sub ICB Location)

Sensitive: Sensitive

When:DSA runs 2019-01-25 — 2022-01-24 2018.06 — 2020.03.

Access method: Frequent adhoc flow, Frequent Adhoc Flow

Data-controller type: NHS KENT AND MEDWAY CCG, NHS KENT AND MEDWAY ICB - 91Q

Sublicensing allowed: No

Datasets:

  1. Acute-Local Provider Flows
  2. Ambulance-Local Provider Flows
  3. Children and Young People Health
  4. Community Services Data Set
  5. Community-Local Provider Flows
  6. Demand for Service-Local Provider Flows
  7. Diagnostic Imaging Dataset
  8. Diagnostic Services-Local Provider Flows
  9. Emergency Care-Local Provider Flows
  10. Experience, Quality and Outcomes-Local Provider Flows
  11. Improving Access to Psychological Therapies Data Set
  12. Maternity Services Data Set
  13. Mental Health and Learning Disabilities Data Set
  14. Mental Health Minimum Data Set
  15. Mental Health Services Data Set
  16. Other Not Elsewhere Classified (NEC)-Local Provider Flows
  17. Population Data-Local Provider Flows
  18. Primary Care Services-Local Provider Flows
  19. Public Health and Screening Services-Local Provider Flows
  20. SUS for Commissioners
  21. Civil Registration - Births
  22. Civil Registration - Deaths
  23. National Cancer Waiting Times Monitoring DataSet (CWT)
  24. National Cancer Waiting Times Monitoring DataSet (NCWTMDS)
  25. Improving Access to Psychological Therapies Data Set_v1.5

Objectives:

This is an application for the following purposes:
Commissioning
To use pseudonymised data to provide intelligence to support the commissioning of health services. The data (containing both clinical and financial information) is analysed so that health care provision can be planned to support the needs of the population within the CCG area.
The CCGs commission services from a range of providers covering a wide array of services. Each of the data flow categories requested supports the commissioned activity of one or more providers.
The following pseudonymised datasets are required to provide intelligence to support commissioning of health services:
- Secondary Uses Service (SUS+)
- Local Provider Flows
o Acute
o Ambulance
o Demand for Service
o Diagnostic Service
o Emergency Care
o Experience, Quality and Outcomes
o Other Not Elsewhere Classified
o Population Data
o Primary Care Services
o Public Health Screening
- Mental Health Minimum Data Set (MHMDS)
- Mental Health Learning Disability Data Set (MHLDDS)
- Mental Health Services Data Set (MHSDS)
- Maternity Services Data Set (MSDS)
- Improving Access to Psychological Therapy (IAPT)
- Child and Young People Health Service (CYPHS)
- Community Services Data Set (CSDS)
- Diagnostic Imaging Data Set (DIDS)
The pseudonymised data is required to for the following purposes:
§ Population health management:
• Understanding the interdependency of care services
• Targeting care more effectively
• Using value as the redesign principle
• Ensuring we do what we should
§ Data Quality and Validation – allowing data quality checks on the submitted data
§ Thoroughly investigating the needs of the population, to ensure the right services are available for individuals when and where they need them
§ Understanding cohorts of residents who are at risk of becoming users of some of the more expensive services, to better understand and manage those needs
§ Monitoring population health and care interactions to understand where people may slip through the net, or where the provision of care may be being duplicated
§ Modelling activity across all data sets to understand how services interact with each other, and to understand how changes in one service may affect flows through another
§ Service redesign
§ Health Needs Assessment – identification of underlying disease prevalence within the local population
§ Patient stratification and predictive modelling - to identify specific patients at risk of requiring hospital admission and other avoidable factors such as risk of falls, computed using algorithms executed against linked de-identified data, and identification of future service delivery models

The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets.
Processing for commissioning will be conducted by:
- MedeAnalytics and Optum Health Solutions

Yielded Benefits:

The CCG would not been able to meet its statutory obligations without this data. In particular the data has enabled us to check the quality and efficiency of the health services we commission and to plan for the future needs of patients. All of the listed outputs and benefits have been realised and are still applicable for the renewal DSA.

Expected Benefits:

Commissioning
1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, integrated care and pathways.
a. Analysis to support full business cases.
b. Develop business models.
c. Monitor In year projects.
2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types.
3. Health economic modelling using:
a. Analysis on provider performance against 18 weeks wait targets.
b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients.
c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway.
d. Analysis to understand emergency care and linking A&E and Emergency Urgent Care Flows (EUCC).
4. Commissioning cycle support for grouping and re-costing previous activity.
5. Enables monitoring of:
a. CCG outcome indicators.
b. Financial and Non-financial validation of activity.
c. Successful delivery of integrated care within the CCG.
d. Checking frequent or multiple attendances to improve early intervention and avoid admissions.
e. Case management.
f. Care service planning.
g. Commissioning and performance management.
h. List size verification by GP practices.
i. Understanding the care of patients in nursing homes.
6. Feedback to NHS service providers on data quality at an aggregate and individual record level – only on data initially provided by the service providers.
7. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these.
8. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services and early intervention of appropriate care.
9. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required.
10. Potentially reduced premature mortality by more targeted intervention in primary care, which supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework.
11. Better understanding of the health of and the variations in health outcomes within the population to help understand local population characteristics.
12. Better understanding of contract requirements, contract execution, and required services for management of existing contracts, and to assist with identification and planning of future contracts
13. Insights into patient outcomes, and identification of the possible efficacy of outcomes-based contracting opportunities.
14. Reviewing current service provision
a. Cost-benefit analysis and service impact assessments to underpin service transformation across health economy
b. Service planning and re-design (development of NMoC and integrated care pathways, new partnerships, working with new providers etc.)
c. Impact analysis for different models or productivity measures, efficiency and experience
d. Service and pathway review
e. Service utilisation review
15. Ensuring compliance with evidence and guidance
a. Testing approaches with evidence and compliance with guidance.
16. Monitoring outcomes
a. Analysis of variation in outcomes across population group
17. Understanding how services impact across the health economy
a. Service evaluation
b. Programme reviews
c. Analysis of productivity, outcomes, experience, plan, targets and actuals
d. Assessing value for money and efficiency gains
e. Understanding impact of services on health inequalities
18. Understanding how services impact on the health of the population and patient cohorts
a. Measuring and assessing improvement in service provision, patient experience & outcomes and the cost to achieve this
b. Propensity matching and scoring
c. Triple aim analysis
19. Understanding future drivers for change across health economy
a. Forecasting health and care needs for population and population cohorts across STPs
b. Identifying changes in disease trends and prevalence
c. Efficiencies that can be gained from procuring services across wider footprints, from new innovations
d. Predictive modelling
20. Delivering services that meet changing needs of population
a. Analysis to support policy development
b. Ethical and equality impact assessments
c. Implementation of NMOC
d. What do next years contracts need to include?
e. Workforce planning
21. Maximising services and outcomes within financial envelopes across health economy
a. What-if analysis
b. Cost-benefit analysis
c. Health economics analysis
d. Scenario planning and modelling
e. Investment and disinvestment in services analysis
f. Opportunity analysis
All of the above will lead to improved patient experience through more effective commissioning of services and enable us and our providers to direct our finite health and social care (public health) resources more efficiently and effectively.
Users can better understand variation in their system, and make comparisons between populations and organisations in a fair and meaningful way with a greater understanding of what normal is. This will support routine opportunity analyses that they carry out in order to best target resources and best understand which activities have had a genuine benefit, and helped reduce costs to the system.
In addition, the platform provides access to comprehensive supporting information that commissioning organisations such as Clinical Commissioning Groups use to ensure that the services they commission:
• deliver the best outcomes for their patients
• cater for and meet the needs of the population they are responsible for;
• monitor condition prevalence within the population
• identify health inequalities and work with local organisations and agencies to remove them

Outputs:

Commissioning
1. Commissioner reporting:
a. Summary by provider view - plan & actuals year to date (YTD).
b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD.
c. Summary by provider view - activity & finance variance by POD.
d. Planned care by provider view - activity & finance plan & actuals YTD.
e. Planned care by POD view - activity plan & actuals YTD.
f. Provider reporting.
g. Statutory returns.
h. Statutory returns - monthly activity return.
i. Statutory returns - quarterly activity return.
j. Delayed discharges.
k. Quality & performance referral to treatment reporting.
2. Readmissions analysis.
3. Production of aggregate reports for CCG Business Intelligence.
4. Production of project / programme level dashboards.
5. Monitoring of acute / community / mental health quality matrix.
6. Clinical coding reviews / audits.
7. Budget reporting down to individual GP Practice level.
8. GP Practice level dashboard reports include high flyers.
9. Comparators of CCG performance with similar CCGs as set out by a specific range of care quality and performance measures detailed activity and cost reports
10. Data Quality and Validation measures allowing data quality checks on the submitted data
11. Contract Management and Modelling
12. Patient Stratification, such as:
a. Patients at highest risk of admission
b. Most expensive patients (top 15%)
c. Frail and elderly
d. Patients that are currently in hospital
e. Patients with most referrals to secondary care
f. Patients with most emergency activity
g. Patients with most expensive prescriptions
h. Patients recently moving from one care setting to another
i. Discharged from hospital
ii. Discharged from community
13. Identifying and managing preventable and existing conditions
a. Identifying types of individuals and population cohorts at risk of non-elective re-admission
b. Risk stratification to identify populations suitable for case management
c. Risk profiling and predictive modelling
d. Risk stratification for planning services for population cohorts
e. Identification of disease incidence and diagnosis stratification
14. Reducing health inequalities
a. Identifying cohorts of patients who have worse health outcomes typically deprived, ethnic groups, homeless, travellers etc. to enable services to proactively target their needs
b. Socio-demographic analysis
15. Managing demand
a. Waiting times analysis
b. Service demand and supply modelling
c. Understanding cross-border and overseas visitor
d. Winter planning
e. Emergency preparedness, business continuity, recovery and contingency planning
16. Care co-ordination and planning
a. Planning packages of care
b. Service planning
c. Planning care co-ordination
17. Monitoring individual patient health, service utilisation, pathway compliance experience & outcomes across the heath and care system
a. Patient pathway analysis across health and care
b. Outcomes & experience analysis
c. Analysis to support services to react to terror situations
d. Analysis to identify vulnerable patients with potential safeguarding issues
e. Understanding equity of care and unwarranted variation
f. Modelling patient flow
g. Tracking patient pathways
h. Monitoring to support NMoC, ACOs, STPs
i. Identifying duplications in care
j. Identifying gaps in care, missed diagnoses and triple fail events
k. Analysing individual and aggregated timelines
18. Undertaking budget planning, management and reporting
a. Tracking financial performance against plans
b. Budget reporting
c. Tariff development
d. Developing and monitoring capitated budgets
e. Developing and monitoring individual-level budgets
f. Future budget planning and forecasting
g. Paying for care of overseas visitors and cross-border flow
19. Monitoring the value for money
a. Service-level costing & comparisons
b. Identification of cost pressures
c. Cost benefit analysis
d. Equity of spend across services and population cohorts
e. Finance impact assessment
20. Comparing population groups, peers, national and international best practice
a. Identification of variation in productivity, cost, outcomes, quality, experience, compared with peers, national and international & best practice
b. Benchmarking against other parts of the country
c. Identifying unwarranted variations
21. Comparing expected levels
a. Standardised comparisons for prevalence, activity, cost, quality, experience, outcomes for given populations
22. Comparing local targets & plan
a. Monitoring of local variation in productivity, cost, outcomes, quality and experience
b. Local performance dashboards by service provider, commissioner, geography, NMOC, STPs
23. Monitoring activity and cost compliance against contract and agreed plans
a. Contract monitoring
b. Contract reconciliation and challenge
c. Invoice validation
24. Monitoring provider quality, demand, experience and outcomes against contract and agreed plans
a. Performance dashboards
b. CQUIN reporting
c. Clinical audit
d. Patient experience surveys
e. Demand, supply, outcome & experience analysis
f. Monitoring cross-border flows and overseas visitor activity
25. Improving provider data quality
a. Coding audit
b. Data quality validation and review
c. Checking validity of patient identity and commissioner assignment
Analytics Insights
Reports, charts and dashboards providing insights into:
1. Comparators of CCG performance with similar CCGs as set out by a specific range of care quality and performance measures detailed activity and cost reports
2. Data Quality and Validation measures allowing data quality checks on the submitted data
3. Contract Management and Modelling
4. Health needs assessment and predictive modelling instead, such as:
o Patients at highest risk of admission
o Most expensive patients (top 15%)
o Frail and elderly
o Patients that are currently in hospital
o Patients with most referrals to secondary care
o Patients with most emergency activity
o Patients with most expensive prescriptions
o Patients recently moving from one care setting to another
i. Discharged from hospital
ii. Discharged from community
5. Understanding impacts and interdependency of care services

Processing:

Data must only be used as stipulated within this Data Sharing Agreement.

Data Processors must only act upon specific instructions from the Data Controller.

Data can only be stored at the addresses listed under storage addresses.

The Data Controller and any Data Processor will only have access to records of patients of residence and registration within the CCG.

Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data.
All access to data is managed under Roles-Based Access Controls

No patient level data will be linked other than as specifically detailed within this agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality of interest of the applicant.
NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data)
Segregation
Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked.
All access to data is audited

Commissioning
The Data Services for Commissioners Regional Office (DSCRO) obtains the following data sets:
1. SUS+
2. Local Provider Flows (received directly from providers)
o Ambulance
o Demand for Service
o Diagnostic Service
o Emergency Care
o Experience, Quality and Outcomes
o Other Not Elsewhere Classified
o Population Data
o Primary Care Services
o Public Health Screening
3. Mental Health Minimum Data Set (MHMDS)
4. Mental Health Learning Disability Data Set (MHLDDS)
5. Mental Health Services Data Set (MHSDS)
6. Maternity Services Data Set (MSDS)
7. Improving Access to Psychological Therapy (IAPT)
8. Child and Young People Health Service (CYPHS)
9. Community Services Data Set (CSDS)
10. Diagnostic Imaging Data Set (DIDS)

Data Processor 1 – MedeAnalytics
Data quality management and pseudonymisation is completed within the DSCRO using the MedeAnalytics tool specific to the CCG and is then disseminated as follows:
1) Pseudonymised SUS+, Local Provider data, Mental Health data (MHSDS, MHMDS, MHLDDS), Maternity data (MSDS), Improving Access to Psychological Therapies data (IAPT), Child and Young People’s Health data (CYPHS), Community Services Data Set (CSDS) and Diagnostic Imaging data (DIDS) only is securely transferred from the DSCRO to MedeAnalytics.
2) MedeAnalytics also receives the following pseudonymised data from providers that has been pseudonymised at source using the MedeAnalytics pseudonymisation tool:
o Community Data
o Mental Health Data
o Social Care Data
o GP Data
o Any Qualified Provider data
3) MedeAnalytics add derived fields, link data and provide analysis to:
o See patient journeys for pathways or service design, re-design and de-commissioning
o Check recorded activity against contracts or invoices and facilitate discussions with providers
o Undertake population health management
o Undertake data quality and validation checks
o Thoroughly investigate the needs of the population
o Understand cohorts of residents who are at risk
o Conduct Health Needs Assessments
4) Allowed linkage is between the data sets contained within point 1 and point 2 only.
5) MedeAnalytics then pass the processed, pseudonymised and linked data to the CCG.
6) Aggregation of required data for CCG management use will be completed by MedeAnalytics or the CCG as instructed by the CCG.
7) Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set.
8) MedeAnalytics also pass pseudonymised SUS+ and GP data to Optum Health Solutions.

Data Processor 2 – Optum Health Solutions
9) Optum Health Solutions provide analysis to
o Data integration
o Undertake population health management
10) Aggregation of data is completed by Optum Health Solutions.
11) Patient level data will not be shared outside of Optum Health Solutions and will only be shared within Optum Health Solutions on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set.

MedeAnalytics outputs only (Direct Care only)
Re-identification (managed under RBAC) requires an additional step to access re-identification keys held by an independent third party key management service that has no access to the data. Disabling a user’s account in the key management system immediately removes the ability of that user to access re-identification keys.
Each Re-identification requires a different key, so inappropriate retention of keys (which is neither allowed, nor easy to accomplish by design) will not result in compromise of data
Only GP Practice users are able to re-identify patients and only when they have a legitimate reason and a legal right to re-identify, and can only access data to which they have rights under RBAC (which is CG/SIRO approved – within the CCG)
All data providers for a particular region (according to contract) are issued with encryption keys that ensure data for their region can only be linked to data from other providers for the same region. This means that data for two different regional customers cannot be accidentally mixed.
For clarity: Optum require data for our more transformational Public Health facing tools such as Health Population Manager whereas MedeAnalytics will be dealing with the day to day more transactional (SUS, SLAM, MH, Community…) data feeds required for contracting and commissioning purposes.


DSfC - NHS West Kent CCG - Comm — DARS-NIC-154892-N5F9Z

Opt outs honoured: No - data flow is not identifiable, Anonymised - ICO Code Compliant (Section 251, Does not include the flow of confidential data)

Legal basis: Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Health and Social Care Act 2012 – s261(2)(b)(ii)

Purposes: No (Clinical Commissioning Group (CCG), Sub ICB Location)

Sensitive: Sensitive

When:DSA runs 2019-01-25 — 2022-01-24 2018.06 — 2020.03.

Access method: Frequent adhoc flow, Frequent Adhoc Flow

Data-controller type: NHS KENT AND MEDWAY CCG, NHS KENT AND MEDWAY ICB - 91Q

Sublicensing allowed: No

Datasets:

  1. Acute-Local Provider Flows
  2. Ambulance-Local Provider Flows
  3. Children and Young People Health
  4. Community Services Data Set
  5. Community-Local Provider Flows
  6. Demand for Service-Local Provider Flows
  7. Diagnostic Imaging Dataset
  8. Diagnostic Services-Local Provider Flows
  9. Emergency Care-Local Provider Flows
  10. Experience, Quality and Outcomes-Local Provider Flows
  11. Improving Access to Psychological Therapies Data Set
  12. Maternity Services Data Set
  13. Mental Health and Learning Disabilities Data Set
  14. Mental Health Minimum Data Set
  15. Mental Health Services Data Set
  16. Other Not Elsewhere Classified (NEC)-Local Provider Flows
  17. Population Data-Local Provider Flows
  18. Primary Care Services-Local Provider Flows
  19. Public Health and Screening Services-Local Provider Flows
  20. SUS for Commissioners
  21. Civil Registration - Births
  22. Civil Registration - Deaths
  23. National Cancer Waiting Times Monitoring DataSet (CWT)
  24. National Cancer Waiting Times Monitoring DataSet (NCWTMDS)
  25. Improving Access to Psychological Therapies Data Set_v1.5

Objectives:

This is an application for the following purposes:
Commissioning
To use pseudonymised data to provide intelligence to support the commissioning of health services. The data (containing both clinical and financial information) is analysed so that health care provision can be planned to support the needs of the population within the CCG area.
The CCGs commission services from a range of providers covering a wide array of services. Each of the data flow categories requested supports the commissioned activity of one or more providers.
The following pseudonymised datasets are required to provide intelligence to support commissioning of health services:
- Secondary Uses Service (SUS+)
- Local Provider Flows
o Acute
o Ambulance
o Demand for Service
o Diagnostic Service
o Emergency Care
o Experience, Quality and Outcomes
o Other Not Elsewhere Classified
o Population Data
o Primary Care Services
o Public Health Screening
- Mental Health Minimum Data Set (MHMDS)
- Mental Health Learning Disability Data Set (MHLDDS)
- Mental Health Services Data Set (MHSDS)
- Maternity Services Data Set (MSDS)
- Improving Access to Psychological Therapy (IAPT)
- Child and Young People Health Service (CYPHS)
- Community Services Data Set (CSDS)
- Diagnostic Imaging Data Set (DIDS)
The pseudonymised data is required to for the following purposes:
§ Population health management:
• Understanding the interdependency of care services
• Targeting care more effectively
• Using value as the redesign principle
• Ensuring we do what we should
§ Data Quality and Validation – allowing data quality checks on the submitted data
§ Thoroughly investigating the needs of the population, to ensure the right services are available for individuals when and where they need them
§ Understanding cohorts of residents who are at risk of becoming users of some of the more expensive services, to better understand and manage those needs
§ Monitoring population health and care interactions to understand where people may slip through the net, or where the provision of care may be being duplicated
§ Modelling activity across all data sets to understand how services interact with each other, and to understand how changes in one service may affect flows through another
§ Service redesign
§ Health Needs Assessment – identification of underlying disease prevalence within the local population
§ Patient stratification and predictive modelling - to identify specific patients at risk of requiring hospital admission and other avoidable factors such as risk of falls, computed using algorithms executed against linked de-identified data, and identification of future service delivery models

The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets.
Processing for commissioning will be conducted by:
- MedeAnalytics (Data Processor 1)
- Optum Health Solutions (Data Processor 2)

Yielded Benefits:

Expected Benefits:

Commissioning
1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, integrated care and pathways.
a. Analysis to support full business cases.
b. Develop business models.
c. Monitor In year projects.
2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types.
3. Health economic modelling using:
a. Analysis on provider performance against 18 weeks wait targets.
b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients.
c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway.
d. Analysis to understand emergency care and linking A&E and Emergency Urgent Care Flows (EUCC).
4. Commissioning cycle support for grouping and re-costing previous activity.
5. Enables monitoring of:
a. CCG outcome indicators.
b. Financial and Non-financial validation of activity.
c. Successful delivery of integrated care within the CCG.
d. Checking frequent or multiple attendances to improve early intervention and avoid admissions.
e. Case management.
f. Care service planning.
g. Commissioning and performance management.
h. List size verification by GP practices.
i. Understanding the care of patients in nursing homes.
6. Feedback to NHS service providers on data quality at an aggregate and individual record level – only on data initially provided by the service providers.
7. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these.
8. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services and early intervention of appropriate care.
9. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required.
10. Potentially reduced premature mortality by more targeted intervention in primary care, which supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework.
11. Better understanding of the health of and the variations in health outcomes within the population to help understand local population characteristics.
12. Better understanding of contract requirements, contract execution, and required services for management of existing contracts, and to assist with identification and planning of future contracts
13. Insights into patient outcomes, and identification of the possible efficacy of outcomes-based contracting opportunities.
14. Reviewing current service provision
a. Cost-benefit analysis and service impact assessments to underpin service transformation across health economy
b. Service planning and re-design (development of NMoC and integrated care pathways, new partnerships, working with new providers etc.)
c. Impact analysis for different models or productivity measures, efficiency and experience
d. Service and pathway review
e. Service utilisation review
15. Ensuring compliance with evidence and guidance
a. Testing approaches with evidence and compliance with guidance.
16. Monitoring outcomes
a. Analysis of variation in outcomes across population group
17. Understanding how services impact across the health economy
a. Service evaluation
b. Programme reviews
c. Analysis of productivity, outcomes, experience, plan, targets and actuals
d. Assessing value for money and efficiency gains
e. Understanding impact of services on health inequalities
18. Understanding how services impact on the health of the population and patient cohorts
a. Measuring and assessing improvement in service provision, patient experience & outcomes and the cost to achieve this
b. Propensity matching and scoring
c. Triple aim analysis
19. Understanding future drivers for change across health economy
a. Forecasting health and care needs for population and population cohorts across STPs
b. Identifying changes in disease trends and prevalence
c. Efficiencies that can be gained from procuring services across wider footprints, from new innovations
d. Predictive modelling
20. Delivering services that meet changing needs of population
a. Analysis to support policy development
b. Ethical and equality impact assessments
c. Implementation of NMOC
d. What do next years contracts need to include?
e. Workforce planning
21. Maximising services and outcomes within financial envelopes across health economy
a. What-if analysis
b. Cost-benefit analysis
c. Health economics analysis
d. Scenario planning and modelling
e. Investment and disinvestment in services analysis
f. Opportunity analysis
All of the above will lead to improved patient experience through more effective commissioning of services and enable us and our providers to direct our finite health and social care (public health) resources more efficiently and effectively.
Users can better understand variation in their system, and make comparisons between populations and organisations in a fair and meaningful way with a greater understanding of what normal is. This will support routine opportunity analyses that they carry out in order to best target resources and best understand which activities have had a genuine benefit, and helped reduce costs to the system.
In addition, the platform provides access to comprehensive supporting information that commissioning organisations such as Clinical Commissioning Groups use to ensure that the services they commission:
• deliver the best outcomes for their patients
• cater for and meet the needs of the population they are responsible for;
• monitor condition prevalence within the population
• identify health inequalities and work with local organisations and agencies to remove them

Outputs:

Commissioning
1. Commissioner reporting:
a. Summary by provider view - plan & actuals year to date (YTD).
b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD.
c. Summary by provider view - activity & finance variance by POD.
d. Planned care by provider view - activity & finance plan & actuals YTD.
e. Planned care by POD view - activity plan & actuals YTD.
f. Provider reporting.
g. Statutory returns.
h. Statutory returns - monthly activity return.
i. Statutory returns - quarterly activity return.
j. Delayed discharges.
k. Quality & performance referral to treatment reporting.
2. Readmissions analysis.
3. Production of aggregate reports for CCG Business Intelligence.
4. Production of project / programme level dashboards.
5. Monitoring of acute / community / mental health quality matrix.
6. Clinical coding reviews / audits.
7. Budget reporting down to individual GP Practice level.
8. GP Practice level dashboard reports include high flyers.
9. Comparators of CCG performance with similar CCGs as set out by a specific range of care quality and performance measures detailed activity and cost reports
10. Data Quality and Validation measures allowing data quality checks on the submitted data
11. Contract Management and Modelling
12. Patient Stratification, such as:
a. Patients at highest risk of admission
b. Most expensive patients (top 15%)
c. Frail and elderly
d. Patients that are currently in hospital
e. Patients with most referrals to secondary care
f. Patients with most emergency activity
g. Patients with most expensive prescriptions
h. Patients recently moving from one care setting to another
i. Discharged from hospital
ii. Discharged from community
13. Identifying and managing preventable and existing conditions
a. Identifying types of individuals and population cohorts at risk of non-elective re-admission
b. Risk stratification to identify populations suitable for case management
c. Risk profiling and predictive modelling
d. Risk stratification for planning services for population cohorts
e. Identification of disease incidence and diagnosis stratification
14. Reducing health inequalities
a. Identifying cohorts of patients who have worse health outcomes typically deprived, ethnic groups, homeless, travellers etc. to enable services to proactively target their needs
b. Socio-demographic analysis
15. Managing demand
a. Waiting times analysis
b. Service demand and supply modelling
c. Understanding cross-border and overseas visitor
d. Winter planning
e. Emergency preparedness, business continuity, recovery and contingency planning
16. Care co-ordination and planning
a. Planning packages of care
b. Service planning
c. Planning care co-ordination
17. Monitoring individual patient health, service utilisation, pathway compliance experience & outcomes across the heath and care system
a. Patient pathway analysis across health and care
b. Outcomes & experience analysis
c. Analysis to support services to react to terror situations
d. Analysis to identify vulnerable patients with potential safeguarding issues
e. Understanding equity of care and unwarranted variation
f. Modelling patient flow
g. Tracking patient pathways
h. Monitoring to support NMoC, ACOs, STPs
i. Identifying duplications in care
j. Identifying gaps in care, missed diagnoses and triple fail events
k. Analysing individual and aggregated timelines
18. Undertaking budget planning, management and reporting
a. Tracking financial performance against plans
b. Budget reporting
c. Tariff development
d. Developing and monitoring capitated budgets
e. Developing and monitoring individual-level budgets
f. Future budget planning and forecasting
g. Paying for care of overseas visitors and cross-border flow
19. Monitoring the value for money
a. Service-level costing & comparisons
b. Identification of cost pressures
c. Cost benefit analysis
d. Equity of spend across services and population cohorts
e. Finance impact assessment
20. Comparing population groups, peers, national and international best practice
a. Identification of variation in productivity, cost, outcomes, quality, experience, compared with peers, national and international & best practice
b. Benchmarking against other parts of the country
c. Identifying unwarranted variations
21. Comparing expected levels
a. Standardised comparisons for prevalence, activity, cost, quality, experience, outcomes for given populations
22. Comparing local targets & plan
a. Monitoring of local variation in productivity, cost, outcomes, quality and experience
b. Local performance dashboards by service provider, commissioner, geography, NMOC, STPs
23. Monitoring activity and cost compliance against contract and agreed plans
a. Contract monitoring
b. Contract reconciliation and challenge
24. Monitoring provider quality, demand, experience and outcomes against contract and agreed plans
a. Performance dashboards
b. CQUIN reporting
c. Clinical audit
d. Patient experience surveys
e. Demand, supply, outcome & experience analysis
f. Monitoring cross-border flows and overseas visitor activity
25. Improving provider data quality
a. Coding audit
b. Data quality validation and review
c. Checking validity of patient identity and commissioner assignment
Analytics Insights
Reports, charts and dashboards providing insights into:
1. Comparators of CCG performance with similar CCGs as set out by a specific range of care quality and performance measures detailed activity and cost reports
2. Data Quality and Validation measures allowing data quality checks on the submitted data
3. Contract Management and Modelling
4. Health needs assessment and predictive modelling instead, such as:
o Patients at highest risk of admission
o Most expensive patients (top 15%)
o Frail and elderly
o Patients that are currently in hospital
o Patients with most referrals to secondary care
o Patients with most emergency activity
o Patients with most expensive prescriptions
o Patients recently moving from one care setting to another
i. Discharged from hospital
ii. Discharged from community
5. Understanding impacts and interdependency of care services

Processing:

Data must only be used as stipulated within this Data Sharing Agreement.

Data Processors must only act upon specific instructions from the Data Controller.

Data can only be stored at the addresses listed under storage addresses.

The Data Controller and any Data Processor will only have access to records of patients of residence and registration within the CCG.

Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data.
All access to data is managed under Roles-Based Access Controls

No patient level data will be linked other than as specifically detailed within this agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality of interest of the applicant.
NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data)

Segregation
Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked.
All access to data is audited

Commissioning
The Data Services for Commissioners Regional Office (DSCRO) obtains the following data sets:
1. SUS+
2. Local Provider Flows (received directly from providers)
o Ambulance
o Demand for Service
o Diagnostic Service
o Emergency Care
o Experience, Quality and Outcomes
o Other Not Elsewhere Classified
o Population Data
o Primary Care Services
o Public Health Screening
3. Mental Health Minimum Data Set (MHMDS)
4. Mental Health Learning Disability Data Set (MHLDDS)
5. Mental Health Services Data Set (MHSDS)
6. Maternity Services Data Set (MSDS)
7. Improving Access to Psychological Therapy (IAPT)
8. Child and Young People Health Service (CYPHS)
9. Community Services Data Set (CSDS)
10. Diagnostic Imaging Data Set (DIDS)

Data Processor 1 – MedeAnalytics
Data quality management and pseudonymisation is completed within the DSCRO using the MedeAnalytics tool specific to the CCG and is then disseminated as follows:
1) Pseudonymised SUS+, Local Provider data, Mental Health data (MHSDS, MHMDS, MHLDDS), Maternity data (MSDS), Improving Access to Psychological Therapies data (IAPT), Child and Young People’s Health data (CYPHS), Community Services Data Set (CSDS) and Diagnostic Imaging data (DIDS) only is securely transferred from the DSCRO to MedeAnalytics.
2) MedeAnalytics also receives the following pseudonymised data from providers that has been pseudonymised at source using the MedeAnalytics pseudonymisation tool:
o Community Data
o Mental Health Data
o Social Care Data
o GP Data
o Any Qualified Provider data
3) MedeAnalytics add derived fields, link data and provide analysis to:
o See patient journeys for pathways or service design, re-design and de-commissioning
o Check recorded activity against contracts or invoices and facilitate discussions with providers
o Undertake population health management
o Undertake data quality and validation checks
o Thoroughly investigate the needs of the population
o Understand cohorts of residents who are at risk
o Conduct Health Needs Assessments
4) Allowed linkage is between the data sets contained within point 1 and point 2 only.
5) MedeAnalytics then pass the processed, pseudonymised and linked data to the CCG.
6) Aggregation of required data for CCG management use will be completed by MedeAnalytics or the CCG as instructed by the CCG.
7) Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set.
8) MedeAnalytics also pass pseudonymised SUS+ and GP data to Optum Health Solutions.

Data Processor 2 – Optum Health Solutions
9) Optum Health Solutions provide analysis to
o Data integration
o Undertake population health management
10) Aggregation of data is completed by Optum Health Solutions.
11) Patient level data will not be shared outside of Optum Health Solutions and will only be shared within Optum Health Solutions on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set

For clarity: Optum require data for our more transformational Public Health facing tools such as Health Population Manager whereas MedeAnalytics will be dealing with the day to day more transactional (SUS, SLAM, MH, Community…) data feeds required for contracting and commissioning purposes.
MedeAnalytics outputs only (Direct Care only)
Re-identification (managed under RBAC) requires an additional step to access re-identification keys held by an independent third party key management service that has no access to the data. Disabling a user’s account in the key management system immediately removes the ability of that user to access re-identification keys.
Each Re-identification requires a different key, so inappropriate retention of keys (which is neither allowed, nor easy to accomplish by design) will not result in compromise of data
Only GP Practice users are able to re-identify patients and only when they have a legitimate reason and a legal right to re-identify, and can only access data to which they have rights under RBAC (which is CG/SIRO approved – within the CCG)
All data providers for a particular region (according to contract) are issued with encryption keys that ensure data for their region can only be linked to data from other providers for the same region. This means that data for two different regional customers cannot be accidentally mixed.


DSfC - NHS Dartford, Gravesham and Swanley CCG; Comm. — DARS-NIC-154880-M7G5Z

Opt outs honoured: No - data flow is not identifiable, Anonymised - ICO Code Compliant (Section 251, Does not include the flow of confidential data)

Legal basis: Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Health and Social Care Act 2012 – s261(2)(b)(ii)

Purposes: No (Clinical Commissioning Group (CCG), Sub ICB Location)

Sensitive: Sensitive, and Non Sensitive, and Non-Sensitive

When:DSA runs 2019-01-25 — 2022-01-24 2018.06 — 2020.03.

Access method: Frequent adhoc flow, Frequent Adhoc Flow

Data-controller type: NHS KENT AND MEDWAY CCG, NHS KENT AND MEDWAY ICB - 91Q

Sublicensing allowed: No

Datasets:

  1. Acute-Local Provider Flows
  2. Ambulance-Local Provider Flows
  3. Children and Young People Health
  4. Community Services Data Set
  5. Community-Local Provider Flows
  6. Demand for Service-Local Provider Flows
  7. Diagnostic Imaging Dataset
  8. Diagnostic Services-Local Provider Flows
  9. Emergency Care-Local Provider Flows
  10. Experience, Quality and Outcomes-Local Provider Flows
  11. Improving Access to Psychological Therapies Data Set
  12. Maternity Services Data Set
  13. Mental Health and Learning Disabilities Data Set
  14. Mental Health Minimum Data Set
  15. Mental Health Services Data Set
  16. Other Not Elsewhere Classified (NEC)-Local Provider Flows
  17. Population Data-Local Provider Flows
  18. Primary Care Services-Local Provider Flows
  19. Public Health and Screening Services-Local Provider Flows
  20. SUS for Commissioners
  21. National Cancer Waiting Times Monitoring DataSet (CWT)
  22. National Cancer Waiting Times Monitoring DataSet (NCWTMDS)
  23. Improving Access to Psychological Therapies Data Set_v1.5

Objectives:

This is an application for the following purposes:
Commissioning
To use pseudonymised data to provide intelligence to support the commissioning of health services. The data (containing both clinical and financial information) is analysed so that health care provision can be planned to support the needs of the population within the CCG area.
The CCGs commission services from a range of providers covering a wide array of services. Each of the data flow categories requested supports the commissioned activity of one or more providers.
The following pseudonymised datasets are required to provide intelligence to support commissioning of health services:
- Secondary Uses Service (SUS+)
- Local Provider Flows
o Acute
o Ambulance
o Demand for Service
o Diagnostic Service
o Emergency Care
o Experience, Quality and Outcomes
o Other Not Elsewhere Classified
o Population Data
o Primary Care Services
o Public Health Screening
- Mental Health Minimum Data Set (MHMDS)
- Mental Health Learning Disability Data Set (MHLDDS)
- Mental Health Services Data Set (MHSDS)
- Maternity Services Data Set (MSDS)
- Improving Access to Psychological Therapy (IAPT)
- Child and Young People Health Service (CYPHS)
- Community Services Data Set (CSDS)
- Diagnostic Imaging Data Set (DIDS)
The pseudonymised data is required to for the following purposes:
§ Population health management:
• Understanding the interdependency of care services
• Targeting care more effectively
• Using value as the redesign principle
• Ensuring we do what we should
§ Data Quality and Validation – allowing data quality checks on the submitted data
§ Thoroughly investigating the needs of the population, to ensure the right services are available for individuals when and where they need them
§ Understanding cohorts of residents who are at risk of becoming users of some of the more expensive services, to better understand and manage those needs
§ Monitoring population health and care interactions to understand where people may slip through the net, or where the provision of care may be being duplicated
§ Modelling activity across all data sets to understand how services interact with each other, and to understand how changes in one service may affect flows through another
§ Service redesign
§ Health Needs Assessment – identification of underlying disease prevalence within the local population
§ Patient stratification and predictive modelling - to identify specific patients at risk of requiring hospital admission and other avoidable factors such as risk of falls, computed using algorithms executed against linked de-identified data, and identification of future service delivery models

The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets.
Processing for commissioning will be conducted by:
- MedeAnalytics and Optum Health Solutions

Yielded Benefits:

Expected Benefits:

Commissioning
1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, integrated care and pathways.
a. Analysis to support full business cases.
b. Develop business models.
c. Monitor In year projects.
2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types.
3. Health economic modelling using:
a. Analysis on provider performance against 18 weeks wait targets.
b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients.
c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway.
d. Analysis to understand emergency care and linking A&E and Emergency Urgent Care Flows (EUCC).
4. Commissioning cycle support for grouping and re-costing previous activity.
5. Enables monitoring of:
a. CCG outcome indicators.
b. Financial and Non-financial validation of activity.
c. Successful delivery of integrated care within the CCG.
d. Checking frequent or multiple attendances to improve early intervention and avoid admissions.
e. Case management.
f. Care service planning.
g. Commissioning and performance management.
h. List size verification by GP practices.
i. Understanding the care of patients in nursing homes.
6. Feedback to NHS service providers on data quality at an aggregate and individual record level – only on data initially provided by the service providers.
7. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these.
8. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services and early intervention of appropriate care.
9. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required.
10. Potentially reduced premature mortality by more targeted intervention in primary care, which supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework.
11. Better understanding of the health of and the variations in health outcomes within the population to help understand local population characteristics.
12. Better understanding of contract requirements, contract execution, and required services for management of existing contracts, and to assist with identification and planning of future contracts
13. Insights into patient outcomes, and identification of the possible efficacy of outcomes-based contracting opportunities.
14. Reviewing current service provision
a. Cost-benefit analysis and service impact assessments to underpin service transformation across health economy
b. Service planning and re-design (development of NMoC and integrated care pathways, new partnerships, working with new providers etc.)
c. Impact analysis for different models or productivity measures, efficiency and experience
d. Service and pathway review
e. Service utilisation review
15. Ensuring compliance with evidence and guidance
a. Testing approaches with evidence and compliance with guidance.
16. Monitoring outcomes
a. Analysis of variation in outcomes across population group
17. Understanding how services impact across the health economy
a. Service evaluation
b. Programme reviews
c. Analysis of productivity, outcomes, experience, plan, targets and actuals
d. Assessing value for money and efficiency gains
e. Understanding impact of services on health inequalities
18. Understanding how services impact on the health of the population and patient cohorts
a. Measuring and assessing improvement in service provision, patient experience & outcomes and the cost to achieve this
b. Propensity matching and scoring
c. Triple aim analysis
19. Understanding future drivers for change across health economy
a. Forecasting health and care needs for population and population cohorts across STPs
b. Identifying changes in disease trends and prevalence
c. Efficiencies that can be gained from procuring services across wider footprints, from new innovations
d. Predictive modelling
20. Delivering services that meet changing needs of population
a. Analysis to support policy development
b. Ethical and equality impact assessments
c. Implementation of NMOC
d. What do next years contracts need to include?
e. Workforce planning
21. Maximising services and outcomes within financial envelopes across health economy
a. What-if analysis
b. Cost-benefit analysis
c. Health economics analysis
d. Scenario planning and modelling
e. Investment and disinvestment in services analysis
f. Opportunity analysis
All of the above will lead to improved patient experience through more effective commissioning of services and enable us and our providers to direct our finite health and social care (public health) resources more efficiently and effectively.
Users can better understand variation in their system, and make comparisons between populations and organisations in a fair and meaningful way with a greater understanding of what normal is. This will support routine opportunity analyses that they carry out in order to best target resources and best understand which activities have had a genuine benefit, and helped reduce costs to the system.
In addition, the platform provides access to comprehensive supporting information that commissioning organisations such as Clinical Commissioning Groups use to ensure that the services they commission:
• deliver the best outcomes for their patients
• cater for and meet the needs of the population they are responsible for;
• monitor condition prevalence within the population
• identify health inequalities and work with local organisations and agencies to remove them

Outputs:

Commissioning
1. Commissioner reporting:
a. Summary by provider view - plan & actuals year to date (YTD).
b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD.
c. Summary by provider view - activity & finance variance by POD.
d. Planned care by provider view - activity & finance plan & actuals YTD.
e. Planned care by POD view - activity plan & actuals YTD.
f. Provider reporting.
g. Statutory returns.
h. Statutory returns - monthly activity return.
i. Statutory returns - quarterly activity return.
j. Delayed discharges.
k. Quality & performance referral to treatment reporting.
2. Readmissions analysis.
3. Production of aggregate reports for CCG Business Intelligence.
4. Production of project / programme level dashboards.
5. Monitoring of acute / community / mental health quality matrix.
6. Clinical coding reviews / audits.
7. Budget reporting down to individual GP Practice level.
8. GP Practice level dashboard reports include high flyers.
9. Comparators of CCG performance with similar CCGs as set out by a specific range of care quality and performance measures detailed activity and cost reports
10. Data Quality and Validation measures allowing data quality checks on the submitted data
11. Contract Management and Modelling
12. Patient Stratification, such as:
a. Patients at highest risk of admission
b. Most expensive patients (top 15%)
c. Frail and elderly
d. Patients that are currently in hospital
e. Patients with most referrals to secondary care
f. Patients with most emergency activity
g. Patients with most expensive prescriptions
h. Patients recently moving from one care setting to another
i. Discharged from hospital
ii. Discharged from community
13. Identifying and managing preventable and existing conditions
a. Identifying types of individuals and population cohorts at risk of non-elective re-admission
b. Risk stratification to identify populations suitable for case management
c. Risk profiling and predictive modelling
d. Risk stratification for planning services for population cohorts
e. Identification of disease incidence and diagnosis stratification
14. Reducing health inequalities
a. Identifying cohorts of patients who have worse health outcomes typically deprived, ethnic groups, homeless, travellers etc. to enable services to proactively target their needs
b. Socio-demographic analysis
15. Managing demand
a. Waiting times analysis
b. Service demand and supply modelling
c. Understanding cross-border and overseas visitor
d. Winter planning
e. Emergency preparedness, business continuity, recovery and contingency planning
16. Care co-ordination and planning
a. Planning packages of care
b. Service planning
c. Planning care co-ordination
17. Monitoring individual patient health, service utilisation, pathway compliance experience & outcomes across the heath and care system
a. Patient pathway analysis across health and care
b. Outcomes & experience analysis
c. Analysis to support services to react to terror situations
d. Analysis to identify vulnerable patients with potential safeguarding issues
e. Understanding equity of care and unwarranted variation
f. Modelling patient flow
g. Tracking patient pathways
h. Monitoring to support NMoC, ACOs, STPs
i. Identifying duplications in care
j. Identifying gaps in care, missed diagnoses and triple fail events
k. Analysing individual and aggregated timelines
18. Undertaking budget planning, management and reporting
a. Tracking financial performance against plans
b. Budget reporting
c. Tariff development
d. Developing and monitoring capitated budgets
e. Developing and monitoring individual-level budgets
f. Future budget planning and forecasting
g. Paying for care of overseas visitors and cross-border flow
19. Monitoring the value for money
a. Service-level costing & comparisons
b. Identification of cost pressures
c. Cost benefit analysis
d. Equity of spend across services and population cohorts
e. Finance impact assessment
20. Comparing population groups, peers, national and international best practice
a. Identification of variation in productivity, cost, outcomes, quality, experience, compared with peers, national and international & best practice
b. Benchmarking against other parts of the country
c. Identifying unwarranted variations
21. Comparing expected levels
a. Standardised comparisons for prevalence, activity, cost, quality, experience, outcomes for given populations
22. Comparing local targets & plan
a. Monitoring of local variation in productivity, cost, outcomes, quality and experience
b. Local performance dashboards by service provider, commissioner, geography, NMOC, STPs
23. Monitoring activity and cost compliance against contract and agreed plans
a. Contract monitoring
b. Contract reconciliation and challenge
c. Invoice validation
24. Monitoring provider quality, demand, experience and outcomes against contract and agreed plans
a. Performance dashboards
b. CQUIN reporting
c. Clinical audit
d. Patient experience surveys
e. Demand, supply, outcome & experience analysis
f. Monitoring cross-border flows and overseas visitor activity
25. Improving provider data quality
a. Coding audit
b. Data quality validation and review
c. Checking validity of patient identity and commissioner assignment
Analytics Insights
Reports, charts and dashboards providing insights into:
1. Comparators of CCG performance with similar CCGs as set out by a specific range of care quality and performance measures detailed activity and cost reports
2. Data Quality and Validation measures allowing data quality checks on the submitted data
3. Contract Management and Modelling
4. Health needs assessment and predictive modelling instead, such as:
o Patients at highest risk of admission
o Most expensive patients (top 15%)
o Frail and elderly
o Patients that are currently in hospital
o Patients with most referrals to secondary care
o Patients with most emergency activity
o Patients with most expensive prescriptions
o Patients recently moving from one care setting to another
i. Discharged from hospital
ii. Discharged from community
5. Understanding impacts and interdependency of care services

Processing:

Data must only be used as stipulated within this Data Sharing Agreement.

Data Processors must only act upon specific instructions from the Data Controller.

Data can only be stored at the addresses listed under storage addresses.

The Data Controller and any Data Processor will only have access to records of patients of residence and registration within the CCG.

Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data.
All access to data is managed under Roles-Based Access Controls

No patient level data will be linked other than as specifically detailed within this agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality of interest of the applicant.
NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data)
Segregation
Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked.
All access to data is audited

Commissioning
The Data Services for Commissioners Regional Office (DSCRO) obtains the following data sets:
1. SUS+
2. Local Provider Flows (received directly from providers)
o Ambulance
o Demand for Service
o Diagnostic Service
o Emergency Care
o Experience, Quality and Outcomes
o Other Not Elsewhere Classified
o Population Data
o Primary Care Services
o Public Health Screening
3. Mental Health Minimum Data Set (MHMDS)
4. Mental Health Learning Disability Data Set (MHLDDS)
5. Mental Health Services Data Set (MHSDS)
6. Maternity Services Data Set (MSDS)
7. Improving Access to Psychological Therapy (IAPT)
8. Child and Young People Health Service (CYPHS)
9. Community Services Data Set (CSDS)
10. Diagnostic Imaging Data Set (DIDS)

Data Processor 1 – MedeAnalytics
Data quality management and pseudonymisation is completed within the DSCRO using the MedeAnalytics tool specific to the CCG and is then disseminated as follows:
1) Pseudonymised SUS+, Local Provider data, Mental Health data (MHSDS, MHMDS, MHLDDS), Maternity data (MSDS), Improving Access to Psychological Therapies data (IAPT), Child and Young People’s Health data (CYPHS), Community Services Data Set (CSDS) and Diagnostic Imaging data (DIDS) only is securely transferred from the DSCRO to MedeAnalytics.
2) MedeAnalytics also receives the following pseudonymised data from providers that has been pseudonymised at source using the MedeAnalytics pseudonymisation tool:
o Community Data
o Mental Health Data
o Social Care Data
o GP Data
o Any Qualified Provider data
3) MedeAnalytics add derived fields, link data and provide analysis to:
o See patient journeys for pathways or service design, re-design and de-commissioning
o Check recorded activity against contracts or invoices and facilitate discussions with providers
o Undertake population health management
o Undertake data quality and validation checks
o Thoroughly investigate the needs of the population
o Understand cohorts of residents who are at risk
o Conduct Health Needs Assessments
4) Allowed linkage is between the data sets contained within point 1 and point 2 only.
5) MedeAnalytics then pass the processed, pseudonymised and linked data to the CCG.
6) Aggregation of required data for CCG management use will be completed by MedeAnalytics or the CCG as instructed by the CCG.
7) Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set.
8) MedeAnalytics also pass pseudonymised SUS+ and GP data to Optum Health Solutions.

Data Processor 2 – Optum Health Solutions
9) Optum Health Solutions provide analysis to
o Data integration
o Undertake population health management
10) Aggregation of data is completed by Optum Health Solutions.
11) Patient level data will not be shared outside of Optum Health Solutions and will only be shared within Optum Health Solutions on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set.

MedeAnalytics outputs only (Direct Care only)
Re-identification (managed under RBAC) requires an additional step to access re-identification keys held by an independent third party key management service that has no access to the data. Disabling a user’s account in the key management system immediately removes the ability of that user to access re-identification keys.
Each Re-identification requires a different key, so inappropriate retention of keys (which is neither allowed, nor easy to accomplish by design) will not result in compromise of data
Only GP Practice users are able to re-identify patients and only when they have a legitimate reason and a legal right to re-identify, and can only access data to which they have rights under RBAC (which is CG/SIRO approved – within the CCG)
All data providers for a particular region (according to contract) are issued with encryption keys that ensure data for their region can only be linked to data from other providers for the same region. This means that data for two different regional customers cannot be accidentally mixed.
For clarity: Optum require data for our more transformational Public Health facing tools such as Health Population Manager whereas MedeAnalytics will be dealing with the day to day more transactional (SUS, SLAM, MH, Community…) data feeds required for contracting and commissioning purposes.


DSfC - NHS Ashford CCG; Comm — DARS-NIC-153720-N8K6X

Opt outs honoured: No - data flow is not identifiable, Anonymised - ICO Code Compliant (Section 251, Section 251 NHS Act 2006)

Legal basis: Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Health and Social Care Act 2012 – s261(2)(b)(ii)

Purposes: No (Clinical Commissioning Group (CCG), Sub ICB Location)

Sensitive: Sensitive

When:DSA runs 2019-01-25 — 2022-01-24 2018.06 — 2020.03.

Access method: Frequent adhoc flow, Frequent Adhoc Flow

Data-controller type: NHS KENT AND MEDWAY CCG, NHS KENT AND MEDWAY ICB - 91Q

Sublicensing allowed: No

Datasets:

  1. Acute-Local Provider Flows
  2. Ambulance-Local Provider Flows
  3. Children and Young People Health
  4. Community Services Data Set
  5. Community-Local Provider Flows
  6. Demand for Service-Local Provider Flows
  7. Diagnostic Imaging Dataset
  8. Diagnostic Services-Local Provider Flows
  9. Emergency Care-Local Provider Flows
  10. Experience, Quality and Outcomes-Local Provider Flows
  11. Improving Access to Psychological Therapies Data Set
  12. Maternity Services Data Set
  13. Mental Health and Learning Disabilities Data Set
  14. Mental Health Minimum Data Set
  15. Mental Health Services Data Set
  16. National Cancer Waiting Times Monitoring DataSet (CWT)
  17. Other Not Elsewhere Classified (NEC)-Local Provider Flows
  18. Population Data-Local Provider Flows
  19. Primary Care Services-Local Provider Flows
  20. Public Health and Screening Services-Local Provider Flows
  21. SUS for Commissioners
  22. Civil Registration - Births
  23. Civil Registration - Deaths
  24. National Cancer Waiting Times Monitoring DataSet (NCWTMDS)
  25. Improving Access to Psychological Therapies Data Set_v1.5

Objectives:


Commissioning
To use pseudonymised data to provide intelligence to support the commissioning of health services. The data (containing both clinical and financial information) is analysed so that health care provision can be planned to support the needs of the population within the CCG area.
The CCGs commission services from a range of providers covering a wide array of services. Each of the data flow categories requested supports the commissioned activity of one or more providers.
The following pseudonymised datasets are required to provide intelligence to support commissioning of health services:
- Secondary Uses Service (SUS+)
- Local Provider Flows
o Acute
o Ambulance
o Demand for Service
o Diagnostic Service
o Emergency Care
o Experience, Quality and Outcomes
o Other Not Elsewhere Classified
o Population Data
o Primary Care Services
o Public Health Screening
- Mental Health Minimum Data Set (MHMDS)
- Mental Health Learning Disability Data Set (MHLDDS)
- Mental Health Services Data Set (MHSDS)
- Maternity Services Data Set (MSDS)
- Improving Access to Psychological Therapy (IAPT)
- Child and Young People Health Service (CYPHS)
- Community Services Data Set (CSDS)
- Diagnostic Imaging Data Set (DIDS)
- National Cancer Waiting Times Monitoring Data Set (CWT)

The pseudonymised data is required to for the following purposes:
§ Population health management:
• Understanding the interdependency of care services
• Targeting care more effectively
• Using value as the redesign principle
• Ensuring we do what we should
§ Data Quality and Validation – allowing data quality checks on the submitted data
§ Thoroughly investigating the needs of the population, to ensure the right services are available for individuals when and where they need them
§ Understanding cohorts of residents who are at risk of becoming users of some of the more expensive services, to better understand and manage those needs
§ Monitoring population health and care interactions to understand where people may slip through the net, or where the provision of care may be being duplicated
§ Modelling activity across all data sets to understand how services interact with each other, and to understand how changes in one service may affect flows through another
§ Service redesign
§ Health Needs Assessment – identification of underlying disease prevalence within the local population
§ Patient stratification and predictive modelling - to identify specific patients at risk of requiring hospital admission and other avoidable factors such as risk of falls, computed using algorithms executed against linked de-identified data, and identification of future service delivery models

The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets.
Processing for commissioning will be conducted by:
- MedeAnalytics (Data Processor 1)
- Optum Health Solutions (Data Processor 2)
- NHS South Kent Coast CCG (Data Processor 3)

Yielded Benefits:

Expected Benefits:

Commissioning
1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, integrated care and pathways.
a. Analysis to support full business cases.
b. Develop business models.
c. Monitor In year projects.
2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types.
3. Health economic modelling using:
a. Analysis on provider performance against 18 weeks wait targets.
b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients.
c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway.
d. Analysis to understand emergency care and linking A&E and Emergency Urgent Care Flows (EUCC).
4. Commissioning cycle support for grouping and re-costing previous activity.
5. Enables monitoring of:
a. CCG outcome indicators.
b. Financial and Non-financial validation of activity.
c. Successful delivery of integrated care within the CCG.
d. Checking frequent or multiple attendances to improve early intervention and avoid admissions.
e. Case management.
f. Care service planning.
g. Commissioning and performance management.
h. List size verification by GP practices.
i. Understanding the care of patients in nursing homes.
6. Feedback to NHS service providers on data quality at an aggregate and individual record level – only on data initially provided by the service providers.
7. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these.
8. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services and early intervention of appropriate care.
9. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required.
10. Potentially reduced premature mortality by more targeted intervention in primary care, which supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework.
11. Better understanding of the health of and the variations in health outcomes within the population to help understand local population characteristics.
12. Better understanding of contract requirements, contract execution, and required services for management of existing contracts, and to assist with identification and planning of future contracts
13. Insights into patient outcomes, and identification of the possible efficacy of outcomes-based contracting opportunities.
14. Reviewing current service provision
a. Cost-benefit analysis and service impact assessments to underpin service transformation across health economy
b. Service planning and re-design (development of NMoC and integrated care pathways, new partnerships, working with new providers etc.)
c. Impact analysis for different models or productivity measures, efficiency and experience
d. Service and pathway review
e. Service utilisation review
15. Ensuring compliance with evidence and guidance
a. Testing approaches with evidence and compliance with guidance.
16. Monitoring outcomes
a. Analysis of variation in outcomes across population group
17. Understanding how services impact across the health economy
a. Service evaluation
b. Programme reviews
c. Analysis of productivity, outcomes, experience, plan, targets and actuals
d. Assessing value for money and efficiency gains
e. Understanding impact of services on health inequalities
18. Understanding how services impact on the health of the population and patient cohorts
a. Measuring and assessing improvement in service provision, patient experience & outcomes and the cost to achieve this
b. Propensity matching and scoring
c. Triple aim analysis
19. Understanding future drivers for change across health economy
a. Forecasting health and care needs for population and population cohorts across STPs
b. Identifying changes in disease trends and prevalence
c. Efficiencies that can be gained from procuring services across wider footprints, from new innovations
d. Predictive modelling
20. Delivering services that meet changing needs of population
a. Analysis to support policy development
b. Ethical and equality impact assessments
c. Implementation of NMOC
d. What do next years contracts need to include?
e. Workforce planning
21. Maximising services and outcomes within financial envelopes across health economy
a. What-if analysis
b. Cost-benefit analysis
c. Health economics analysis
d. Scenario planning and modelling
e. Investment and disinvestment in services analysis
f. Opportunity analysis
All of the above will lead to improved patient experience through more effective commissioning of services and enable us and our providers to direct our finite health and social care (public health) resources more efficiently and effectively.
Users can better understand variation in their system, and make comparisons between populations and organisations in a fair and meaningful way with a greater understanding of what normal is. This will support routine opportunity analyses that they carry out in order to best target resources and best understand which activities have had a genuine benefit, and helped reduce costs to the system.
In addition, the platform provides access to comprehensive supporting information that commissioning organisations such as Clinical Commissioning Groups use to ensure that the services they commission:
• deliver the best outcomes for their patients
• cater for and meet the needs of the population they are responsible for;
• monitor condition prevalence within the population
• identify health inequalities and work with local organisations and agencies to remove them

Outputs:

Commissioning
1. Commissioner reporting:
a. Summary by provider view - plan & actuals year to date (YTD).
b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD.
c. Summary by provider view - activity & finance variance by POD.
d. Planned care by provider view - activity & finance plan & actuals YTD.
e. Planned care by POD view - activity plan & actuals YTD.
f. Provider reporting.
g. Statutory returns.
h. Statutory returns - monthly activity return.
i. Statutory returns - quarterly activity return.
j. Delayed discharges.
k. Quality & performance referral to treatment reporting.
2. Readmissions analysis.
3. Production of aggregate reports for CCG Business Intelligence.
4. Production of project / programme level dashboards.
5. Monitoring of acute / community / mental health quality matrix.
6. Clinical coding reviews / audits.
7. Budget reporting down to individual GP Practice level.
8. GP Practice level dashboard reports include high flyers.
9. Comparators of CCG performance with similar CCGs as set out by a specific range of care quality and performance measures detailed activity and cost reports
10. Data Quality and Validation measures allowing data quality checks on the submitted data
11. Contract Management and Modelling
12. Patient Stratification, such as:
a. Patients at highest risk of admission
b. Most expensive patients (top 15%)
c. Frail and elderly
d. Patients that are currently in hospital
e. Patients with most referrals to secondary care
f. Patients with most emergency activity
g. Patients with most expensive prescriptions
h. Patients recently moving from one care setting to another
i. Discharged from hospital
ii. Discharged from community
13. Identifying and managing preventable and existing conditions
a. Identifying types of individuals and population cohorts at risk of non-elective re-admission
b. Risk stratification to identify populations suitable for case management
c. Risk profiling and predictive modelling
d. Risk stratification for planning services for population cohorts
e. Identification of disease incidence and diagnosis stratification
14. Reducing health inequalities
a. Identifying cohorts of patients who have worse health outcomes typically deprived, ethnic groups, homeless, travellers etc. to enable services to proactively target their needs
b. Socio-demographic analysis
15. Managing demand
a. Waiting times analysis
b. Service demand and supply modelling
c. Understanding cross-border and overseas visitor
d. Winter planning
e. Emergency preparedness, business continuity, recovery and contingency planning
16. Care co-ordination and planning
a. Planning packages of care
b. Service planning
c. Planning care co-ordination
17. Monitoring individual patient health, service utilisation, pathway compliance experience & outcomes across the heath and care system
a. Patient pathway analysis across health and care
b. Outcomes & experience analysis
c. Analysis to support services to react to terror situations
d. Analysis to identify vulnerable patients with potential safeguarding issues
e. Understanding equity of care and unwarranted variation
f. Modelling patient flow
g. Tracking patient pathways
h. Monitoring to support NMoC, ACOs, STPs
i. Identifying duplications in care
j. Identifying gaps in care, missed diagnoses and triple fail events
k. Analysing individual and aggregated timelines
18. Undertaking budget planning, management and reporting
a. Tracking financial performance against plans
b. Budget reporting
c. Tariff development
d. Developing and monitoring capitated budgets
e. Developing and monitoring individual-level budgets
f. Future budget planning and forecasting
g. Paying for care of overseas visitors and cross-border flow
19. Monitoring the value for money
a. Service-level costing & comparisons
b. Identification of cost pressures
c. Cost benefit analysis
d. Equity of spend across services and population cohorts
e. Finance impact assessment
20. Comparing population groups, peers, national and international best practice
a. Identification of variation in productivity, cost, outcomes, quality, experience, compared with peers, national and international & best practice
b. Benchmarking against other parts of the country
c. Identifying unwarranted variations
21. Comparing expected levels
a. Standardised comparisons for prevalence, activity, cost, quality, experience, outcomes for given populations
22. Comparing local targets & plan
a. Monitoring of local variation in productivity, cost, outcomes, quality and experience
b. Local performance dashboards by service provider, commissioner, geography, NMOC, STPs
23. Monitoring activity and cost compliance against contract and agreed plans
a. Contract monitoring
b. Contract reconciliation and challenge
24. Monitoring provider quality, demand, experience and outcomes against contract and agreed plans
a. Performance dashboards
b. CQUIN reporting
c. Clinical audit
d. Patient experience surveys
e. Demand, supply, outcome & experience analysis
f. Monitoring cross-border flows and overseas visitor activity
25. Improving provider data quality
a. Coding audit
b. Data quality validation and review
c. Checking validity of patient identity and commissioner assignment
Analytics Insights
Reports, charts and dashboards providing insights into:
1. Comparators of CCG performance with similar CCGs as set out by a specific range of care quality and performance measures detailed activity and cost reports
2. Data Quality and Validation measures allowing data quality checks on the submitted data
3. Contract Management and Modelling
4. Health needs assessment and predictive modelling instead, such as:
o Patients at highest risk of admission
o Most expensive patients (top 15%)
o Frail and elderly
o Patients that are currently in hospital
o Patients with most referrals to secondary care
o Patients with most emergency activity
o Patients with most expensive prescriptions
o Patients recently moving from one care setting to another
i. Discharged from hospital
ii. Discharged from community
5. Understanding impacts and interdependency of care services

Processing:

Data must only be used as stipulated within this Data Sharing Agreement.

Data Processors must only act upon specific instructions from the Data Controller.

Data can only be stored at the addresses listed under storage addresses.

The Data Controller and any Data Processor will only have access to records of patients of residence and registration within the CCG.

Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data.

All access to data is managed under Roles-Based Access Controls

No patient level data will be linked other than as specifically detailed within this agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality of interest of the applicant.

NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data)

Segregation
Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked.

All access to data is audited


Commissioning
The Data Services for Commissioners Regional Office (DSCRO) obtains the following data sets:
1. SUS+
2. Local Provider Flows (received directly from providers)
o Ambulance
o Demand for Service
o Diagnostic Service
o Emergency Care
o Experience, Quality and Outcomes
o Other Not Elsewhere Classified
o Population Data
o Primary Care Services
o Public Health Screening
3. Mental Health Minimum Data Set (MHMDS)
4. Mental Health Learning Disability Data Set (MHLDDS)
5. Mental Health Services Data Set (MHSDS)
6. Maternity Services Data Set (MSDS)
7. Improving Access to Psychological Therapy (IAPT)
8. Child and Young People Health Service (CYPHS)
9. Community Services Data Set (CSDS)
10. Diagnostic Imaging Data Set (DIDS)
11. National Cancer Waiting Times Monitoring Data Set (CWT)

Data Processor 1 – MedeAnalytics
Data quality management and pseudonymisation is completed within the DSCRO using the MedeAnalytics tool specific to the CCG and is then disseminated as follows:
1) Pseudonymised SUS+, Local Provider data, Mental Health data (MHSDS, MHMDS, MHLDDS), Maternity data (MSDS), Improving Access to Psychological Therapies data (IAPT), Child and Young People’s Health data (CYPHS), Community Services Data Set (CSDS), National Cancer Waiting Times Monitoring Data Set (CWT) and Diagnostic Imaging data (DIDS) only is securely transferred from the DSCRO to MedeAnalytics.
2) MedeAnalytics also receives the following pseudonymised data from providers that has been pseudonymised at source using the MedeAnalytics pseudonymisation tool:
o Community Data
o Mental Health Data
o Social Care Data
o GP Data
o Any Qualified Provider data
3) MedeAnalytics add derived fields, link data and provide analysis to:
o See patient journeys for pathways or service design, re-design and de-commissioning
o Check recorded activity against contracts or invoices and facilitate discussions with providers
o Undertake population health management
o Undertake data quality and validation checks
o Thoroughly investigate the needs of the population
o Understand cohorts of residents who are at risk
o Conduct Health Needs Assessments
4) Allowed linkage is between the data sets contained within point 1 and point 2 only.
5) MedeAnalytics then pass the processed, pseudonymised and linked data to the CCG.
6) Aggregation of required data for CCG management use will be completed by MedeAnalytics or the CCG as instructed by the CCG.
7) Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set.
8) MedeAnalytics also pass pseudonymised SUS+ and GP data to Optum Health Solutions.

Data Processor 2 – Optum Health Solutions
9) Optum Health Solutions provide analysis to
o Data integration
o Undertake population health management
10) Aggregation of data is completed by Optum Health Solutions.
11) Patient level data will not be shared outside of Optum Health Solutions and will only be shared within Optum Health Solutions on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set

For clarity: Optum require data for our more transformational Public Health facing tools such as Health Population Manager whereas MedeAnalytics will be dealing with the day to day more transactional (SUS, SLAM, MH, Community…) data feeds required for contracting and commissioning purposes.

MedeAnalytics outputs only (Direct Care only)
Re-identification (managed under RBAC) requires an additional step to access re-identification keys held by an independent third party key management service that has no access to the data. Disabling a user’s account in the key management system immediately removes the ability of that user to access re-identification keys.

Each Re-identification requires a different key, so inappropriate retention of keys (which is neither allowed, nor easy to accomplish by design) will not result in compromise of data
Only GP Practice users are able to re-identify patients and only when they have a legitimate reason and a legal right to re-identify, and can only access data to which they have rights under RBAC (which is CG/SIRO approved – within the CCG)

All data providers for a particular region (according to contract) are issued with encryption keys that ensure data for their region can only be linked to data from other providers for the same region. This means that data for two different regional customers cannot be accidentally mixed.


Data Processor 3 – NHS South Kent Coast CCG
1. Pseudonymised Mental Health data (MHSDS, MHMDS, MHLDDS), Improving Access to Psychological Therapies data (IAPT), Community Services Data Set (CSDS), National Cancer Waiting Times Monitoring Data Set (CWT) and Child and Young People’s Health data (CYPHS) only is securely transferred from the DSCRO to NHS South Kent Coast CCG
2. NHS South Kent Coast CCG add derived fields, link data and provide analysis to:
a. See patient journeys for pathways or service design, re-design and de-commissioning.
b. Check recorded activity against contracts or invoices and facilitate discussions with providers.
c. Undertake population health management
d. Undertake data quality and validation checks
e. Thoroughly investigate the needs of the population
f. Understand cohorts of residents who are at risk
g. Conduct Health Needs Assessments
3. Allowed linkage is between the data sets contained within point 1.
4. NHS South Kent Coast CCG then pass the processed, pseudonymised and linked data to the CCG.
5. Aggregation of required data for CCG management use will be completed by NHS South Kent Coast CCG or the CCG as instructed by the CCG.
6. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set.