NHS Digital Data Release Register - reformatted

NHS Milton Keynes Ccg projects

1126 data files in total were disseminated unsafely (information about files used safely is missing for TRE/"system access" projects).


🚩 NHS Milton Keynes Ccg was sent multiple files from the same dataset, in the same month, both with optouts respected and with optouts ignored. NHS Milton Keynes Ccg may not have compared the two files, but the identifiers are consistent between datasets, and outside of a good TRE NHS Digital can not know what recipients actually do.

DSfC - NHS Milton Keynes CCG - RS — DARS-NIC-294304-Q1M0X

Type of data: information not disclosed for TRE projects

Opt outs honoured: Yes - patient objections upheld, Identifiable (Section 251 NHS Act 2006)

Legal basis: Health and Social Care Act 2012 – s261(7), Health and Social Care Act 2012 – s261(7)

Purposes: No (Clinical Commissioning Group (CCG), Sub ICB Location)

Sensitive: Non Sensitive, and Non-Sensitive

When:DSA runs 2019-06-01 — 2022-05-31 2019.07 — 2021.03.

Access method: Frequent Adhoc Flow, One-Off

Data-controller type: NHS BEDFORDSHIRE, LUTON AND MILTON KEYNES CCG, NHS BEDFORDSHIRE, LUTON AND MILTON KEYNES ICB - M1J4Y

Sublicensing allowed: No

Datasets:

  1. SUS for Commissioners

Objectives:

Risk Stratification
Risk stratification is a tool for identifying and predicting which patients are at high risk or are likely to be at high risk and prioritising the management of their care in order to prevent worse outcomes.

To conduct risk stratification Secondary User Services (SUS+) data, identifiable at the level of NHS number is linked with Primary Care data (from GPs) and an algorithm is applied to produce risk scores. Risk Stratification provides focus for future demands by enabling commissioners to prepare plans for patients. Commissioners can then prepare plans for patients who may require high levels of care. Risk Stratification also enables General Practitioners (GPs) to better target intervention in Primary Care.

Risk Stratification will be conducted by Prescribing Services Limited

Expected Benefits:

Risk Stratification
Risk stratification promotes improved case management in primary care and will lead to the following benefits
being realised:
1. Improved planning by better understanding patient flows through the healthcare system, thus allowing
commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify
priorities and identify plans to address these.
2. Improved quality of services through reduced emergency readmissions, especially avoidable emergency
admissions. This is achieved through mapping of frequent users of emergency services thus allowing early
intervention.
3. Improved access to services by identifying which services may be in demand but have poor access, and from this
identify areas where improvement is required.
4. Supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG
Outcome Framework by allowing for more targeted intervention in primary care.
5. Better understanding of local population characteristics through analysis of their health and healthcare
outcomes.
All of the above lead to improved patient experience through more effective commissioning of services.

Outputs:

1. As part of the risk stratification processing activity detailed above, GPs have access to the risk stratification tool which highlights patients for whom the GP is responsible and have been classed as at risk. The only identifier available to GPs is the NHS numbers of their own patients. Any further identification of the patients will be completed by the GP on their own systems.
2. GP Practices will be able to view the risk scores for individual patients with the ability to display the underlying SUS+ data for the individual patients when it is required for direct care purposes by someone who has a legitimate relationship with the patient.

CCGs will be able to:
3. Target specific vulnerable patient groups and enable clinicians with the duty of care for the patient to offer appropriate interventions.
4. Reduce hospital readmissions and targeting clinical interventions to high risk patients.
5. Identify patients at risk of deterioration and providing effective care.
6. Reduce in the difference in the quality of care between those with the best and worst outcomes.
7. Re-design care to reduce admissions.
8. Set up capitated budgets – budgets based on care provided to the specific population.
9. Identify health determinants of risk of admission to hospital, or other adverse care outcomes.
10. Monitor vulnerable groups of patients including but not limited to frailty, COPD, Diabetes, elderly.
11. Health needs assessments – identifying numbers of patients with specific health conditions or combination of conditions.
12. Classify vulnerable groups based on: disease profiles; conditions currently being treated; current service use; pharmacy use and risk of future overall cost.
13. Production of Theographs – a visual timeline of a patients encounters with hospital providers.
14. Analyse based on specific diseases
In addition:
- The risk stratification tool will provide aggregate reporting of number and percentage of population found to be at risk.
- Record level output (pseudonymised) will be available for commissioners (of the CCG), pseudonymised at patient level. Onward sharing of this data is not permitted.

Processing:

Data must only be used for the purposes stipulated within this Data Sharing Agreement. Any additional disclosure / publication will require further approval from NHS Digital.


Data Processors must only act upon specific instructions from the Data Controller.


Data can only be stored at the addresses listed under storage addresses.

All access to data is managed under Role-Based Access Controls. Users can only access data authorised by their role.

Patient level data will not be linked other than as specifically detailed within this Data Sharing Agreement. Data released will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data.

NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data).

The DSCRO (part of NHS Digital) will apply National Opt-outs before any identifiable data leaves the DSCRO only for the purpose of Risk Stratification.

CCGs should work with general practices within their CCG to help them fulfil data controller responsibilities regarding flow of identifiable data into risk stratification tools.

The only identifier available in the data set is the NHS numbers. Any further identification of the patients will only be completed by the patient’s clinician on their own systems for the purpose of direct care with a legitimate relationship.


Onward Sharing

Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data.

Aggregated reports only with small number suppression can be shared externally as set out within NHS Digital guidance applicable to each data set.


Segregation

Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked.

All access to data is auditable by NHS Digital.

Data Minimisation
Data Minimisation in relation to the data sets listed within the application are listed below. This also includes the purpose on which they would be applied -

For the purpose of Risk Stratification:
• Patients who are normally registered and/or resident within NHS Milton Keynes CCG (including historical activity where the patient was previously registered or resident in another commissioner

The Bunker Secure Hosting Ltd do not access data held under this agreement as they only supply the building. Therefore, any access to the data held under this agreement would be considered a breach of the agreement. This includes granting of access to the database[s] containing the data.


Risk Stratification
1. Identifiable SUS+ data is obtained from the SUS Repository to the Data Services for Commissioners Regional Office (DSCRO).
2. Data quality management and standardisation of data is completed by the DSCRO and the data identifiable at the level of NHS number is transferred securely to Prescribing Services Ltd, who hold the SUS+ data within the secure Data Centre on N3.
3. Identifiable GP Data is securely sent from the GP system to Prescribing Services Ltd.
4. SUS+ data is linked to GP data in the risk stratification tool by the data processor.
5. As part of the risk stratification processing activity, GPs have access to the risk stratification tool within the data
processor, which highlights patients with whom the GP has a legitimate relationship and have been classed as at risk. The only identifier available to GPs is the NHS numbers of their own patients. Any further identification of the patients will be completed by the GP on their own systems.
6. Once Prescribing Services Ltd has completed the processing, the CCG can access the online system via a secure connection to access the data pseudonymised at patient level.


DSfC - NHS Milton Keynes CCG - IV, Comm. — DARS-NIC-47118-L9M1G

Type of data: information not disclosed for TRE projects

Opt outs honoured: No - data flow is not identifiable, Yes - patient objections upheld, No - DSfC for Invoice Validation Purposes, Anonymised - ICO Code Compliant, Identifiable (Section 251, Section 251 NHS Act 2006)

Legal basis: Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Health and Social Care Act 2012 – s261(7), Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Health and Social Care Act 2012 – s261(7), Health and Social Care Act 2012 – s261(2)(b)(ii)

Purposes: No (Clinical Commissioning Group (CCG), Sub ICB Location)

Sensitive: Sensitive

When:DSA runs 2019-07-28 — 2022-07-27 2018.10 — 2021.03.

Access method: Frequent Adhoc Flow, One-Off

Data-controller type: NHS BEDFORDSHIRE, LUTON AND MILTON KEYNES CCG, NHS BEDFORDSHIRE, LUTON AND MILTON KEYNES ICB - M1J4Y

Sublicensing allowed: No

Datasets:

  1. Acute-Local Provider Flows
  2. Ambulance-Local Provider Flows
  3. Children and Young People Health
  4. Community Services Data Set
  5. Community-Local Provider Flows
  6. Demand for Service-Local Provider Flows
  7. Diagnostic Imaging Dataset
  8. Diagnostic Services-Local Provider Flows
  9. Emergency Care-Local Provider Flows
  10. Experience, Quality and Outcomes-Local Provider Flows
  11. Improving Access to Psychological Therapies Data Set
  12. Maternity Services Data Set
  13. Mental Health and Learning Disabilities Data Set
  14. Mental Health Minimum Data Set
  15. Mental Health Services Data Set
  16. Mental Health-Local Provider Flows
  17. National Cancer Waiting Times Monitoring DataSet (CWT)
  18. Other Not Elsewhere Classified (NEC)-Local Provider Flows
  19. Population Data-Local Provider Flows
  20. Primary Care Services-Local Provider Flows
  21. Public Health and Screening Services-Local Provider Flows
  22. SUS for Commissioners
  23. Civil Registration - Births
  24. Civil Registration - Deaths
  25. National Diabetes Audit
  26. Patient Reported Outcome Measures
  27. National Cancer Waiting Times Monitoring DataSet (NCWTMDS)
  28. Improving Access to Psychological Therapies Data Set_v1.5
  29. Civil Registrations of Death
  30. Community Services Data Set (CSDS)
  31. Diagnostic Imaging Data Set (DID)
  32. Improving Access to Psychological Therapies (IAPT) v1.5
  33. Mental Health and Learning Disabilities Data Set (MHLDDS)
  34. Mental Health Minimum Data Set (MHMDS)
  35. Mental Health Services Data Set (MHSDS)
  36. Patient Reported Outcome Measures (PROMs)

Objectives:

Invoice Validation

Invoice validation is part of a process by which providers of care or services get paid for the work they do.

Invoices are submitted to the Clinical Commissioning Group (CCG) so they are able to ensure that the activity claimed for each patient is their responsibility. This is done by processing and analysing Secondary User Services (SUS+) data, which is received into a secure Controlled Environment for Finance (CEfF). The SUS+ data is identifiable at the level of NHS number. The NHS number is only used to confirm the accuracy of backing-data sets and will not be used further.
The legal basis for this to occur is under Section 251 of NHS Act 2006.
Invoice Validation with be conducted by:
NHS Arden & Greater East Midlands Commissioning Support Unit.

The CCG are advised by the CSU whether payment for invoices can be made or not.


Commissioning

To use pseudonymised data to provide intelligence to support commissioning of health services. The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets.
The CCGs commission services from a range of providers covering a wide array of services. Each of the data flow categories requested supports the commissioned activity of one or more providers.
The following pseudonymised datasets are required to provide intelligence to support commissioning of health services:
- Secondary Uses Service (SUS)
- Local Provider Flows
o Acute
o Ambulance
o Community
o Demand for Service
o Diagnostic Service
o Emergency Care
o Experience, Quality and Outcomes
o Mental Health
o Other Not Elsewhere Classified
o Population Data
o Primary Care Services
o Public Health Screening
- Mental Health Minimum Data Set (MHMDS)
- Mental Health Learning Disability Data Set (MHLDDS)
- Mental Health Services Data Set (MHSDS)
- Maternity Services Data Set (MSDS)
- Improving Access to Psychological Therapy (IAPT)
- Child and Young People Health Service (CYPHS)
- Diagnostic Imaging Data Set (DIDS)
- Community Services Data Set (CSDS)
- National Cancer Waiting Times Data Set (NCWT)
The pseudonymised data is required to for the following purposes:
 Population health management:
• Understanding the interdependency of care services
• Targeting care more effectively
• Using value as the redesign principle
 Data Quality and Validation – allowing data quality checks on the submitted data
 Thoroughly investigating the needs of the population, to ensure the right services are available for individuals when and where they need them
 Understanding cohorts of residents who are at risk of becoming users of some of the more expensive services, to better understand and manage those needs
 Monitoring population health and care interactions to understand where people may slip through the net, or where the provision of care may be being duplicated
 Modelling activity across all data sets to understand how services interact with each other, and to understand how changes in one service may affect flows through another
 Service redesign
 Health Needs Assessment – identification of underlying disease prevalence within the local population
 Patient stratification and predictive modelling - to identify specific patients at risk of requiring hospital admission and other avoidable factors such as risk of falls, computed using algorithms executed against linked de-identified data, and identification of future service delivery models

The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets.
Processing for commissioning will be conducted by:
- Arden and Greater East Midlands Commissioning Support Unit
- Optum Health Solutions Limited.

Yielded Benefits:

N/A

Expected Benefits:

Invoice Validation
1. Financial validation of activity
2. CCG Budget control
3. Commissioning and performance management
4. Meeting commissioning objectives without compromising patient confidentiality
5. The avoidance of misappropriation of public funds to ensure the ongoing delivery of patient care

Commissioning
1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, integrated care and pathways.
a. Analysis to support full business cases.
b. Develop business models.
c. Monitor In year projects.
2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types.
3. Health economic modelling using:
a. Analysis on provider performance against 18 weeks wait targets.
b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients.
c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway.
d. Analysis to understand emergency care and linking A&E and Emergency Urgent Care Flows (EUCC).
4. Commissioning cycle support for grouping and re-costing previous activity.
5. Enables monitoring of:
a. CCG outcome indicators.
b. Non-financial validation of activity.
c. Successful delivery of integrated care within the CCG.
d. Checking frequent or multiple attendances to improve early intervention and avoid admissions.
e. Case management.
f. Care service planning.
g. Commissioning and performance management.
h. List size verification by GP practices.
i. Understanding the care of patients in nursing homes.
6. Feedback to NHS service providers on data quality at an aggregate and individual record level – only on data initially provided by the service providers.

Outputs:

Invoice Validation
1. Addressing poor data quality issues
2. Production of reports for business intelligence
3. Budget reporting
4. Validation of invoices for non-contracted events
Commissioning
1. Commissioner reporting:
a. Summary by provider view - plan & actuals year to date (YTD).
b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD.
c. Summary by provider view - activity & finance variance by POD.
d. Planned care by provider view - activity & finance plan & actuals YTD.
e. Planned care by POD view - activity plan & actuals YTD.
f. Provider reporting.
g. Statutory returns.
h. Statutory returns - monthly activity return.
i. Statutory returns - quarterly activity return.
j. Delayed discharges.
k. Quality & performance referral to treatment reporting.
2. Readmissions analysis.
3. Production of aggregate reports for CCG Business Intelligence.
4. Production of project / programme level dashboards.
5. Monitoring of acute / community / mental health quality matrix.
6. Clinical coding reviews / audits.
7. Budget reporting down to individual GP Practice level.
8. GP Practice level dashboard reports include high flyers.

Processing:

Data must only be used as stipulated within this Data Sharing Agreement.

Data Processors must only act upon specific instructions from the Data Controller.

Data can only be stored at the addresses listed under storage addresses.

Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data.

All access to data is managed under Roles-Based Access Controls

No patient level data will be linked other than as specifically detailed within this agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality and that data required by the applicant.

NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data)

Segregation
Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked.

All access to data is auditable by NHS Digital.

Data for the purpose of Invoice Validation is kept within the CEfF, and only used by staff properly trained and authorised for the activity. Only CEfF staff are able to access data in the CEfF and only CEfF staff operate the invoice validation process within the CEfF. Data flows directly in to the CEfF from the DSCRO and from the providers – it does not flow through any other processors.


Invoice Validation
1. Identifiable SUS Data is obtained from the SUS Repository to the Data Services for Commissioners Regional Office (DSCRO).
- The DSCRO pushes a one-way data flow of SUS data into the Controlled Environment for Finance (CEfF) in the Arden and Greater East Midlands Commissioning Support Unit .
2. The CSU carry out the following processing activities within the CEfF for invoice validation purposes:
a. Checking the individual is registered to a particular Clinical Commissioning Group (CCG) and associated with an invoice from the SUS data flow to validate the corresponding record in the backing data flow
b. Once the backing information is received, this will be checked against national NHS and local commissioning policies as well as being checked against system access and reports provided by NHS Digital to confirm the payments are:
i. In line with Payment by Results tariffs
ii. are in relation to a patient registered with a CCG GP or resident within the CCG area.
iii. The health care provided should be paid by the CCG in line with CCG guidance. 
3. The CCG are notified that the invoice has been validated and can be paid. Any discrepancies or non-validated invoices are investigated and resolved between Arden and Greater East Midlands Commissioning Support Unit CEfF team and the provider meaning that no identifiable data needs to be sent to the CCG. The CCG only receives notification to pay and management reporting detailing the total quantum of invoices received pending, processed etc.


Commissioning
The Data Services for Commissioners Regional Office (DSCRO) obtains the following data sets:
1. SUS
2. Local Provider Flows (received directly from providers)
o Acute
o Ambulance
o Community
o Demand for Service
o Diagnostic Service
o Emergency Care
o Experience, Quality and Outcomes
o Mental Health
o Other Not Elsewhere Classified
o Population Data
o Primary Care Services
o Public Health Screening
3. Mental Health Minimum Data Set (MHMDS)
4. Mental Health Learning Disability Data Set (MHLDDS)
5. Mental Health Services Data Set (MHSDS)
6. Maternity Services Data Set (MSDS)
7. Improving Access to Psychological Therapy (IAPT)
8. Child and Young People Health Service (CYPHS)
9. Diagnostic Imaging Data Set (DIDS)
10. Community Services Data Set (CSDS)
11. National Cancer Waiting Times Data Set (NCWT)
Data quality management and pseudonymisation is completed within the DSCRO and is then disseminated as follows:

Data Processor – Arden and Greater East Midlands Commissioning Support Unit
1) Pseudonymised SUS, Local Provider data, Mental Health data (MHSDS, MHMDS, MHLDDS), Maternity data (MSDS), Improving Access to Psychological Therapies data (IAPT), Child and Young People’s Health data (CYPHS) Diagnostic Imaging data (DIDS)Community Services Data Set (CSDS) and National Cancer Waiting Times Data Set (NCWT) only is securely transferred from the DSCRO to Arden and Greater East Midlands Commissioning Support Unit.
2) Arden and Greater East Midlands Commissioning Support Unit add derived fields, link data and provide analysis to:
a. See patient journeys for pathways or service design, re-design and de-commissioning.
b. Check recorded activity against contracts or invoices and facilitate discussions with providers.
c. Undertake population health management
d. Undertake data quality and validation checks
e. Thoroughly investigate the needs of the population
f. Understand cohorts of residents who are at risk
g. Conduct Health Needs Assessments
3) Allowed linkage is between the data sets contained within point 1.
4) Arden and Greater East Midlands Commissioning Support Unit then pass the processed, pseudonymised and linked data to the CCG. The CCG analyse the data to see patient journeys for pathways or service design, re-design and de-commissioning.
5) Aggregation of required data for CCG management use will be completed by Arden and Greater East Midlands Commissioning Support Unit or the CCG as instructed by the CCG.
6) Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared.

Data Processor 2 – Arden and Greater East Midlands Commissioning Support Unit
1) Pseudonymised SUS and Local Provider data only is securely transferred from the DSCRO to Optum Health Solutions Limited.
2) Optum Health Solutions Limited add derived fields, link data and provide analysis.
3) Allowed linkage is between the data sets contained within point 1.
4) Optum Health Solutions Limited then pass the processed, pseudonymised and linked data to the CCG. The CCG analyse the data to see patient journeys for pathways or service design, re-design and de-commissioning.
5) Aggregation of required data for CCG management use will be completed by Optum Health Solutions Limited or the CCG as instructed by the CCG.
6) Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared


GDPPR COVID-19 – CCG - Pseudo — DARS-NIC-416308-H6X4N

Type of data: information not disclosed for TRE projects

Opt outs honoured: No - Statutory exemption to flow confidential data without consent, Anonymised - ICO Code Compliant (Statutory exemption to flow confidential data without consent)

Legal basis: CV19: Regulation 3 (4) of the Health Service (Control of Patient Information) Regulations 2002, CV19: Regulation 3 (4) of the Health Service (Control of Patient Information) Regulations 2002; Health and Social Care Act 2012 - s261(5)(d)

Purposes: No (Clinical Commissioning Group (CCG), Sub ICB Location)

Sensitive: Sensitive

When:DSA runs 2020-11-18 — 2021-03-31 2021.01 — 2021.02.

Access method: One-Off, Frequent Adhoc Flow

Data-controller type: NHS BEDFORDSHIRE, LUTON AND MILTON KEYNES CCG, NHS BEDFORDSHIRE, LUTON AND MILTON KEYNES ICB - M1J4Y

Sublicensing allowed: No

Datasets:

  1. GPES Data for Pandemic Planning and Research (COVID-19)
  2. COVID-19 General Practice Extraction Service (GPES) Data for Pandemic Planning and Research (GDPPR)

Objectives:

NHS Digital has been provided with the necessary powers to support the Secretary of State’s response to COVID-19 under the COVID-19 Public Health Directions 2020 (COVID-19 Directions) and support various COVID-19 purposes, the data shared under this agreement can be used for these specified purposes except where they would require the reidentification of individuals.

GPES data for pandemic planning and research (GDPPR COVID 19)
To support the response to the outbreak, NHS Digital has been legally directed to collect and analyse healthcare information about patients from their GP record for the duration of the COVID-19 emergency period under the COVID-19 Directions.
The data which NHS Digital has collected and is providing under this agreement includes coded health data, which is held in a patient’s GP record, such as details of:
• diagnoses and findings
• medications and other prescribed items
• investigations, tests and results
• treatments and outcomes
• vaccinations and immunisations

Details of any sensitive SNOMED codes included in the GDPPR data set can be found in the Reference Data and GDPPR COVID 19 user guides hosted on the NHS Digital website. SNOMED codes are included in GDPPR data.
There are no free text record entries in the data.

The Controller will use the pseudonymised GDPPR COVID 19 data to provide intelligence to support their local response to the COVID-19 emergency. The data is analysed so that health care provision can be planned to support the needs of the population within the CCG area for the COVID-19 purposes.

Such uses of the data include but are not limited to:

• Analysis of missed appointments - Analysis of local missed/delayed referrals due to the COVID-19 crisis to estimate the potential impact and to estimate when ‘normal’ health and care services may resume, linked to Paragraph 2.2.3 of the COVID-19 Directions.

• Patient risk stratification and predictive modelling - to highlight patients at risk of requiring hospital admission due to COVID-19, computed using algorithms executed against linked de-identified data, and identification of future service delivery models linked to Paragraph 2.2.2 of the COVID-19 Directions. As with all risk stratification, this would lead to the identification of the characteristics of a cohort that could subsequently, and separately, be used to identify individuals for intervention. However the identification of individuals will not be done as part of this data sharing agreement, and the data shared under this agreement will not be reidentified.

• Resource Allocation - In order to assess system wide impact of COVID-19, the GDPPR COVID 19 data will allow reallocation of resources to the worst hit localities using their expertise in scenario planning, clinical impact and assessment of workforce needs, linked to Paragraph 2.2.4 of the COVID-19 Directions:

The data may only be linked by the Data Controller or their respective Data Processor, to other pseudonymised datasets which it holds under a current data sharing agreement only where such data is provided for the purposes of general commissioning by NHS Digital. The Health Service Control of Patient Information Regulations (COPI) will also apply to any data linked to the GDPPR data.
The linked data may only be used for purposes stipulated within this agreement and may only be held and used whilst both data sharing agreements are live and in date. Using the linked data for any other purposes, including non-COVID-19 purposes would be considered a breach of this agreement. Reidentification of individuals is not permitted under this DSA.

LEGAL BASIS FOR PROCESSING DATA:
Legal Basis for NHS Digital to Disseminate the Data:
NHS Digital is able to disseminate data with the Recipients for the agreed purposes under a notice issued to NHS Digital by the Secretary of State for Health and Social Care under Regulation 3(4) of the Health Service Control of Patient Information Regulations (COPI) dated 17 March 2020 (the NHSD COPI Notice).
The Recipients are health organisations covered by Regulation 3(3) of COPI and the agreed purposes (paragraphs 2.2.2-2.2.4 of the COVID-19 Directions, as stated below in section 5a) for which the disseminated data is being shared are covered by Regulation 3(1) of COPI.

Under the Health and Social Care Act, NHS Digital is relying on section 261(5)(d) – necessary or expedient to share the disseminated data with the Recipients for the agreed purposes.


Legal Basis for Processing:
The Recipients are able to receive and process the disseminated data under a notice issued to the Recipients by the Secretary of State for Health and Social Care under Regulation 3(4) of COPI dated 20th March (the Recipient COPI Notice section 2).

The Secretary of State has issued notices under the Health Service Control of Patient Information Regulations 2002 requiring the following organisations to process information:

Health organisations

“Health Organisations” defined below under Regulation 3(3) of COPI includes CCGs for the reasons explained below. These are clinically led statutory NHS bodies responsible for the planning and commissioning of health care services for their local area

The Secretary of State for Health and Social Care has issued NHS Digital with a Notice under Regulation 3(4) of the National Health Service (Control of Patient Information Regulations) 2002 (COPI) to require NHS Digital to share confidential patient information with organisations permitted to process confidential information under Regulation 3(3) of COPI. These include:

• persons employed or engaged for the purposes of the health service

Under Section 26 of the Health and Social Care Act 2012, CCG’s have a duty to provide and manage health services for the population.

Regulation 7 of COPI includes certain limitations. The request has considered these limitations, considering data minimisation, access controls and technical and organisational measures.

Under GDPR, the Recipients can rely on Article 6(1)(c) – Legal Obligation to receive and process the Disclosed Data from NHS Digital for the Agreed Purposes under the Recipient COPI Notice. As this is health information and therefore special category personal data the Recipients can also rely on Article 9(2)(h) – preventative or occupational medicine and para 6 of Schedule 1 DPA – statutory purpose.

Expected Benefits:

• Manage demand and capacity
• Reallocation of resources
• Bring in additional workforce support
• Assists commissioners to make better decisions to support patients
• Identifying COVID-19 trends and risks to public health
• Enables CCGs to provide guidance and develop policies to respond to the outbreak
• Controlling and helping to prevent the spread of the virus

Outputs:

• Operational planning to predict likely demand on primary, community and acute service for vulnerable patients due to the impact of COVID-19
• Analysis of resource allocation
• Investigating and monitoring the effects of COVID-19
• Patient Stratification in relation to COVID-19, such as:
o Patients at highest risk of admission
o Frail and elderly
o Patients that are currently in hospital
o Patients with prescriptions related to COVID-19
o Patients recently Discharged from hospital
For avoidance of doubt these are pseudonymised patient cohorts, not identifiable.

Processing:

PROCESSING CONDITIONS:
Data must only be used for the purposes stipulated within this Data Sharing Agreement. Any additional disclosure / publication will require further approval from NHS Digital.

Data Processors must only act upon specific instructions from the Data Controller.

All access to data is managed under Role-Based Access Controls. Users can only access data authorised by their role and the tasks that they are required to undertake.

Patient level data will not be linked other than as specifically detailed within this Data Sharing Agreement.

NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract i.e.: employees, agents and contractors of the Data Recipient who may have access to that data).

The Recipients will take all required security measures to protect the disseminated data and they will not generate copies of their cuts of the disseminated data unless this is strictly necessary. Where this is necessary, the Recipients will keep a log of all copies of the disseminated data and who is controlling them and ensure these are updated and destroyed securely.

Onward sharing of patient level data is not permitted under this agreement. Only aggregated reports with small number suppression can be shared externally.

The data disseminated will only be used for COVID-19 GDPPR purposes as described in this DSA, any other purpose is excluded.

SEGREGATION:
Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked.

AUDIT
All access to data is auditable by NHS Digital in accordance with the Data Sharing Framework Contract and NHS Digital terms.
Under the Local Audit and Accountability Act 2014, section 35, Secretary of State has power to audit all data that has flowed, including under COPI.

DATA MINIMISATION:
Data Minimisation in relation to the data sets listed within the application are listed below:

• Patients who are normally registered and/or resident within the CCG region (including historical activity where the patient was previously registered or resident in another commissioner area).
and/or
• Patients treated by a provider where the CCG is the host/co-ordinating commissioner and/or has the primary responsibility for the provider services in the local health economy.
and/or
• Activity identified by the provider and recorded as such within national systems (such as SUS+) as for the attention of the CCG.

The Data Services for Commissioners Regional Office (DSCRO) obtains the following data sets:
- GDPPR COVID 19 Data
Pseudonymisation is completed within the DSCRO and is then disseminated as follows:
1. Pseudonymised GDPPR COVID 19 data is securely transferred from the DSCRO to the Data Controller / Processor
2. Aggregation of required data will be completed by the Controller (or the Processor as instructed by the Controller).
3. Patient level data may not be shared by the Controller (or any of its processors).


DSfC - NHS Milton Keynes CCG - Comm — DARS-NIC-178123-C4W3G

Type of data: information not disclosed for TRE projects

Opt outs honoured: No - data flow is not identifiable, Anonymised - ICO Code Compliant (Section 251, Does not include the flow of confidential data)

Legal basis: Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Health and Social Care Act 2012 – s261(2)(b)(ii)

Purposes: No (Clinical Commissioning Group (CCG), Sub ICB Location)

Sensitive: Sensitive

When:DSA runs 2019-04-26 — 2020-04-25 2018.06 — 2020.03.

Access method: Frequent adhoc flow, Frequent Adhoc Flow

Data-controller type: NHS BEDFORDSHIRE, LUTON AND MILTON KEYNES CCG, NHS BEDFORDSHIRE, LUTON AND MILTON KEYNES ICB - M1J4Y

Sublicensing allowed: No

Datasets:

  1. Acute-Local Provider Flows
  2. Ambulance-Local Provider Flows
  3. Children and Young People Health
  4. Community-Local Provider Flows
  5. Demand for Service-Local Provider Flows
  6. Diagnostic Imaging Dataset
  7. Diagnostic Services-Local Provider Flows
  8. Emergency Care-Local Provider Flows
  9. Experience, Quality and Outcomes-Local Provider Flows
  10. Improving Access to Psychological Therapies Data Set
  11. Maternity Services Data Set
  12. Mental Health and Learning Disabilities Data Set
  13. Mental Health Minimum Data Set
  14. Mental Health Services Data Set
  15. Mental Health-Local Provider Flows
  16. National Cancer Waiting Times Monitoring DataSet (CWT)
  17. Other Not Elsewhere Classified (NEC)-Local Provider Flows
  18. Population Data-Local Provider Flows
  19. Primary Care Services-Local Provider Flows
  20. Public Health and Screening Services-Local Provider Flows
  21. SUS for Commissioners
  22. National Cancer Waiting Times Monitoring DataSet (NCWTMDS)
  23. Improving Access to Psychological Therapies Data Set_v1.5
  24. Diagnostic Imaging Data Set (DID)
  25. Improving Access to Psychological Therapies (IAPT) v1.5
  26. Mental Health and Learning Disabilities Data Set (MHLDDS)
  27. Mental Health Minimum Data Set (MHMDS)
  28. Mental Health Services Data Set (MHSDS)

Objectives:

Commissioning
To use pseudonymised data to provide intelligence to support the commissioning of health services. The data (containing both clinical and financial information) is analysed so that health care provision can be planned to support the needs of the population within the CCG area.
The CCGs commission services from a range of providers covering a wide array of services. Each of the data flow categories requested supports the commissioned activity of one or more providers.
The following pseudonymised datasets are required to provide intelligence to support commissioning of health services:
- Secondary Uses Service (SUS+)
- Local Provider Flows
o Acute
o Ambulance
o Community
o Demand for Service
o Diagnostic Service
o Emergency Care
o Experience, Quality and Outcomes
o Mental Health
o Other Not Elsewhere Classified
o Population Data
o Primary Care Services
o Public Health Screening
- Mental Health Minimum Data Set (MHMDS)
- Mental Health Learning Disability Data Set (MHLDDS)
- Mental Health Services Data Set (MHSDS)
- Maternity Services Data Set (MSDS)
- Improving Access to Psychological Therapy (IAPT)
- Child and Young People Health Service (CYPHS)
- Community Services Data Set (CSDS)
- Diagnostic Imaging Data Set (DIDS)
- National Cancer Waiting Times Monitoring Data Set (CWT)
The pseudonymised data is required to for the following purposes:
§ Population health management:
• Understanding the interdependency of care services
• Targeting care more effectively
• Using value as the redesign principle
§ Thoroughly investigating the needs of the population, to ensure the right services are available for individuals when and where they need them
§ Understanding cohorts of residents who are at risk of becoming users of some of the more expensive services, to better understand and manage those needs
§ Modelling activity across all data sets to understand how services interact with each other, and to understand how changes in one service may affect flows through another
§ Service redesign
§ Health Needs Assessment – identification of underlying disease prevalence within the local population
§ Patient stratification and predictive modelling - to identify specific patients at risk of requiring hospital admission and other avoidable factors such as risk of falls, computed using algorithms executed against linked de-identified data, and identification of future service delivery models

The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets.
Processing for commissioning will be conducted by Optum Health Solutions Limited
NHS Milton Keynes CCG is working collaboratively with hospital, community, mental health, ambulance, social care and General Practice health and care providers. Optum Health Solutions Limited will undertake an analytics project which will provide a foundation for integration work across the health and care system. It will introduce patient centric population health insight into the Milton Keynes health and care system. The Bedfordshire, Luton and Milton Keynes STP has signalled its intention to move towards an integrated care system and is an NHS England accelerator site. The population health analytics will provide a foundation for integration work across the system, however at this point is only within Milton Keynes.

Analysis of the linked datasets will present a joined up and comprehensive view of how patient cohorts interact with services across the Milton Keynes health and care system. It will be used to identify and understand priority population segments which clinical and system leaders will design future new care models around. This analytical process will engage leaders, clinicians and managers with how patients accessing their part of the system interact with other providers and services and will provide new insight into care model design. Commissioners and providers will use this insight to identify both short and long-term savings opportunities by identifying unwarranted variation in outcomes and service utilisation between population segments. The analysis outputs will be aggregate with small number suppression applied in line with NHS Digital standards.

Yielded Benefits:

Commissioning 1. Insights delivered to MK CCG on population needs, including locality specific information and benchmarking versus regional rates. Specific growth drivers within the population identified and quantified, and insights into high-cost segments of the population delivered. 2. Local providers engaged in conversations around high-cost segments, including how local services are shaped to deliver to these segments. Multiple on-site workshops held with local clinicians and provider management, and insights delivered on specific local needs. 3. Significant clinical engagement in analytics outcomes and further avenues of enquiry explored, and change in clinical behaviour in response to insights has been noted. Further analytical work is required to embed these approaches systematically. 4. Significant capability coaching of local leaders, analysts and clinicians has been undertaken off the back of the work done with this data, and local knowledge of pop health management has increased. Further analytical work is required to embed these approaches systematically. 5. As part of local provider and local authority engagement, integrated care has been the cornerstone of the analytics done to date, and the insights delivered have enabled discussions from across health and social care.

Expected Benefits:

Commissioning
1. Insight into the health needs of the population and how they are changing – the population health analytics will analyse how changes in the population are diving growth in service utilisation across the system.
2. Insight into how well services are aligned to the health needs of the population – the analytics will consider current service delivery and whether it Is optimised for effective population health management.
3. Insight into unwarranted variation in clinical and economic outcomes between population segments (opportunity identification) – the analytics will highlight high levels of variation in cost and utilisation between population groups, these will be clinically validated and fed back into the planning system as potential savings opportunities.
4. Supporting the development of population health management.
5. Supporting the development of integrated care.

Outputs:

Commissioning
1. Linked data quality report – this report will be used to work with data specialists within Milton Keynes to validate the data used against a local view, this will ensure the data is accurate and representative.
2. Initial analytical review of the data for feedback from MK analytics specialists – this report will be used to test and validate insights from Optums analysis with local NHS analytical experts.
3. Initial analytical review of the data for clinical engagement and feedback – this report will be used to validate whether variation in service utilisation between different groups of patients is considered normal by clinicians.
4. Final analytical review for analytical and clinical stakeholders – this report will summarise the key findings from the initial analytical reviews. It also will include analysis on any additional lines of enquiry based on feedback from the initial analytical reviews.
5. Final report for Milton Keynes CCG, Local Authority and GP practices – this report will present the findings of the project to stakeholders across the system. It will include all the key insights and in some cases may include recommendations for new clinical models or advice on population health management strategies, these will be aligned to priority population groups and designed to address unwarranted variation in health outcomes.

Notes on Outputs
• The five reports will only contain aggregate data with small number suppression.
• No record level, patient level or event level data will be shared outside of Optums secure environment.
• All data handled by Optum will be pseudonymised at all times and Optum will not have access to the decryption key.
• Any additional reporting requested by the CCG will be prepared in either an anonymised or aggregate format and will not be shared outside of the CCG unless it is aggregate with small number suppression.

Processing:

Data must only be used as stipulated within this Data Sharing Agreement.

Data Processors must only act upon specific instructions from the Data Controller.

Data can only be stored at the addresses listed under storage addresses.

The Data Controller and any Data Processor will only have access to records of patients of residence and registration within the CCG.

Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data.
All access to data is managed under Roles-Based Access Controls

No patient level data will be linked other than as specifically detailed within this agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality and that data required by the applicant.
NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data)

Segregation
Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked.

All access to data is auditable by NHS Digital.

Commissioning
The Data Services for Commissioners Regional Office (DSCRO) obtains the following data sets:
1. SUS+
2. Local Provider Flows (received directly from providers)
a. Acute
b. Ambulance
c. Community
d. Demand for Service
e. Diagnostic Service
f. Emergency Care
g. Experience, Quality and Outcomes
h. Mental Health
i. Other Not Elsewhere Classified
j. Population Data
k. Primary Care Services
l. Public Health Screening
3. Mental Health Minimum Data Set (MHMDS)
4. Mental Health Learning Disability Data Set (MHLDDS)
5. Mental Health Services Data Set (MHSDS)
6. Maternity Services Data Set (MSDS)
7. Improving Access to Psychological Therapy (IAPT)
8. Child and Young People Health Service (CYPHS)
9. Community Services Data Set (CSDS)
10. Diagnostic Imaging Data Set (DIDS)
11. National Cancer Waiting Times Monitoring Data Set (CWT)
Data quality management and pseudonymisation is completed within the DSCRO. Pseudonymisation is undertaken using the Medeanalytics pseudonymisation at source tool. The DSCRO will generate a salt encryption key to be used for this project and will share it with Milton Keynes Council and Apollo Medical (who will be acting as a Data Processor for the GPs) Data is then disseminated as follows:
Data Processor – Optum Health Solutions Limited
1. Pseudonymised SUS+, Local Provider data, Mental Health data (MHSDS, MHMDS, MHLDDS), Maternity data (MSDS), Improving Access to Psychological Therapies data (IAPT), Child and Young People’s Health data (CYPHS), Community Services Data Set (CSDS). Diagnostic Imaging data (DIDS) and National Cancer Waiting Times Monitoring Data Set (CWT) only is securely transferred from the DSCRO to Optum Health Solutions Limited.
2. Optum Health Solutions Limited Solutions will receive pseudonymised primary care data from the Milton Keynes General Practices, via their data processor Apollo, using secure FTP. The data is pseudonymised before leaving the GP system.
3. Milton Keynes Council pseudonymise Social Care data using the MedeAnalytics pseudonymisation at source tool. Milton Keynes Council then send pseudonymised Social Care data to Optum Health Solutions Limited
4. Optum Health Solutions Limited add derived fields, link data and provide analysis to:
a. See patient journeys for pathways or service design, re-design and de-commissioning.
b. Undertake population health management
c. Undertake data quality and validation checks
d. Thoroughly investigate the needs of the population
e. Understand cohorts of residents who are at risk
f. Conduct Health Needs Assessments
5. Allowed linkage is between the data sets contained within points 1, 2 and 3.
6. Aggregation of required data for CCG management use will be completed by Optum Health Solutions Limited or the CCG as instructed by the CCG.
7. Aggregated reports with small number suppression will be sent to the CCG.
8. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set.

No data is sent to, processed or stored by MedeAnalytics.
Optum Health Solutions Limited will not reidentify any data.


Project 5 — NIC-178123-C4W3G

Type of data: information not disclosed for TRE projects

Opt outs honoured: N

Legal basis: Health and Social Care Act 2012

Purposes: ()

Sensitive: Sensitive

When:2018.03 — 2018.05.

Access method: Ongoing

Data-controller type:

Sublicensing allowed:

Datasets:

  1. SUS for Commissioners
  2. Public Health and Screening Services-Local Provider Flows
  3. Primary Care Services-Local Provider Flows
  4. Population Data-Local Provider Flows
  5. Other Not Elsewhere Classified (NEC)-Local Provider Flows
  6. National Cancer Waiting Times Monitoring DataSet
  7. Mental Health-Local Provider Flows
  8. Mental Health Services Data Set
  9. Mental Health Minimum Data Set
  10. Mental Health and Learning Disabilities Data Set
  11. Maternity Services Data Set
  12. Improving Access to Psychological Therapies Data Set
  13. Experience, Quality and Outcomes-Local Provider Flows
  14. Emergency Care-Local Provider Flows
  15. Diagnostic Services-Local Provider Flows
  16. Diagnostic Imaging Dataset
  17. Demand for Service-Local Provider Flows
  18. Community-Local Provider Flows
  19. Children and Young People Health
  20. Ambulance-Local Provider Flows
  21. Acute-Local Provider Flows

Objectives:

Commissioning
To use pseudonymised data to provide intelligence to support the commissioning of health services. The data (containing both clinical and financial information) is analysed so that health care provision can be planned to support the needs of the population within the CCG area.
The CCGs commission services from a range of providers covering a wide array of services. Each of the data flow categories requested supports the commissioned activity of one or more providers.
The following pseudonymised datasets are required to provide intelligence to support commissioning of health services:
- Secondary Uses Service (SUS+)
- Local Provider Flows
o Acute
o Ambulance
o Community
o Demand for Service
o Diagnostic Service
o Emergency Care
o Experience, Quality and Outcomes
o Mental Health
o Other Not Elsewhere Classified
o Population Data
o Primary Care Services
o Public Health Screening
- Mental Health Minimum Data Set (MHMDS)
- Mental Health Learning Disability Data Set (MHLDDS)
- Mental Health Services Data Set (MHSDS)
- Maternity Services Data Set (MSDS)
- Improving Access to Psychological Therapy (IAPT)
- Child and Young People Health Service (CYPHS)
- Community Services Data Set (CSDS)
- Diagnostic Imaging Data Set (DIDS)
- National Cancer Waiting Times Monitoring Data Set (CWT)
The pseudonymised data is required to for the following purposes:
 Population health management:
• Understanding the interdependency of care services
• Targeting care more effectively
• Using value as the redesign principle
 Thoroughly investigating the needs of the population, to ensure the right services are available for individuals when and where they need them
 Understanding cohorts of residents who are at risk of becoming users of some of the more expensive services, to better understand and manage those needs
 Modelling activity across all data sets to understand how services interact with each other, and to understand how changes in one service may affect flows through another
 Service redesign
 Health Needs Assessment – identification of underlying disease prevalence within the local population
 Patient stratification and predictive modelling - to identify specific patients at risk of requiring hospital admission and other avoidable factors such as risk of falls, computed using algorithms executed against linked de-identified data, and identification of future service delivery models

The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets.
Processing for commissioning will be conducted by Optum Health Solutions Limited
NHS Milton Keynes CCG is working collaboratively with hospital, community, mental health, ambulance, social care and General Practice health and care providers. Optum Health Solutions Limited will undertake an analytics project which will provide a foundation for integration work across the health and care system. It will introduce patient centric population health insight into the Milton Keynes health and care system. The Bedfordshire, Luton and Milton Keynes STP has signalled its intention to move towards an integrated care system and is an NHS England accelerator site. The population health analytics will provide a foundation for integration work across the system, however at this point is only within Milton Keynes.

Analysis of the linked datasets will present a joined up and comprehensive view of how patient cohorts interact with services across the Milton Keynes health and care system. It will be used to identify and understand priority population segments which clinical and system leaders will design future new care models around. This analytical process will engage leaders, clinicians and managers with how patients accessing their part of the system interact with other providers and services and will provide new insight into care model design. Commissioners and providers will use this insight to identify both short and long-term savings opportunities by identifying unwarranted variation in outcomes and service utilisation between population segments. The analysis outputs will be aggregate with small number suppression applied in line with NHS Digital standards.

Expected Benefits:

Commissioning
1. Insight into the health needs of the population and how they are changing – the population health analytics will analyse how changes in the population are diving growth in service utilisation across the system.
2. Insight into how well services are aligned to the health needs of the population – the analytics will consider current service delivery and whether it Is optimised for effective population health management.
3. Insight into unwarranted variation in clinical and economic outcomes between population segments (opportunity identification) – the analytics will highlight high levels of variation in cost and utilisation between population groups, these will be clinically validated and fed back into the planning system as potential savings opportunities.
4. Supporting the development of population health management.
5. Supporting the development of integrated care.

Outputs:

Commissioning
1. Linked data quality report – this report will be used to work with data specialists within Milton Keynes to validate the data used against a local view, this will ensure the data is accurate and representative.
2. Initial analytical review of the data for feedback from MK analytics specialists – this report will be used to test and validate insights from Optums analysis with local NHS analytical experts.
3. Initial analytical review of the data for clinical engagement and feedback – this report will be used to validate whether variation in service utilisation between different groups of patients is considered normal by clinicians.
4. Final analytical review for analytical and clinical stakeholders – this report will summarise the key findings from the initial analytical reviews. It also will include analysis on any additional lines of enquiry based on feedback from the initial analytical reviews.
5. Final report for Milton Keynes CCG, Local Authority and GP practices – this report will present the findings of the project to stakeholders across the system. It will include all the key insights and in some cases may include recommendations for new clinical models or advice on population health management strategies, these will be aligned to priority population groups and designed to address unwarranted variation in health outcomes.

Notes on Outputs
• The five reports will only contain aggregate data with small number suppression.
• No record level, patient level or event level data will be shared outside of Optums secure environment.
• All data handled by Optum will be pseudonymised at all times and Optum will not have access to the decryption key.
• Any additional reporting requested by the CCG will be prepared in either an anonymised or aggregate format and will not be shared outside of the CCG unless it is aggregate with small number suppression.

Processing:

Data must only be used as stipulated within this Data Sharing Agreement.

Data Processors must only act upon specific instructions from the Data Controller.

Data can only be stored at the addresses listed under storage addresses.

The Data Controller and any Data Processor will only have access to records of patients of residence and registration within the CCG.

Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data.
All access to data is managed under Roles-Based Access Controls

No patient level data will be linked other than as specifically detailed within this agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality and that data required by the applicant.
NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data)

Segregation
Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked.

All access to data is auditable by NHS Digital.

Commissioning
The Data Services for Commissioners Regional Office (DSCRO) obtains the following data sets:
1. SUS+
2. Local Provider Flows (received directly from providers)
a. Acute
b. Ambulance
c. Community
d. Demand for Service
e. Diagnostic Service
f. Emergency Care
g. Experience, Quality and Outcomes
h. Mental Health
i. Other Not Elsewhere Classified
j. Population Data
k. Primary Care Services
l. Public Health Screening
3. Mental Health Minimum Data Set (MHMDS)
4. Mental Health Learning Disability Data Set (MHLDDS)
5. Mental Health Services Data Set (MHSDS)
6. Maternity Services Data Set (MSDS)
7. Improving Access to Psychological Therapy (IAPT)
8. Child and Young People Health Service (CYPHS)
9. Community Services Data Set (CSDS)
10. Diagnostic Imaging Data Set (DIDS)
11. National Cancer Waiting Times Monitoring Data Set (CWT)
Data quality management and pseudonymisation is completed within the DSCRO. Pseudonymisation is undertaken using the Medeanalytics pseudonymisation at source tool. The DSCRO will generate a salt encryption key to be used for this project and will share it with Milton Keynes Council and Apollo Medical (who will be acting as a Data Processor for the GPs) Data is then disseminated as follows:
Data Processor – Optum Health Solutions Limited
1. Pseudonymised SUS+, Local Provider data, Mental Health data (MHSDS, MHMDS, MHLDDS), Maternity data (MSDS), Improving Access to Psychological Therapies data (IAPT), Child and Young People’s Health data (CYPHS), Community Services Data Set (CSDS). Diagnostic Imaging data (DIDS) and National Cancer Waiting Times Monitoring Data Set (CWT) only is securely transferred from the DSCRO to Optum Health Solutions Limited.
2. Optum Health Solutions Limited Solutions will receive pseudonymised primary care data from the Milton Keynes General Practices, via their data processor Apollo, using secure FTP. The data is pseudonymised before leaving the GP system.
3. Milton Keynes Council pseudonymise Social Care data using the MedeAnalytics pseudonymisation at source tool. Milton Keynes Council then send pseudonymised Social Care data to Optum Health Solutions Limited
4. Optum Health Solutions Limited add derived fields, link data and provide analysis to:
a. See patient journeys for pathways or service design, re-design and de-commissioning.
b. Undertake population health management
c. Undertake data quality and validation checks
d. Thoroughly investigate the needs of the population
e. Understand cohorts of residents who are at risk
f. Conduct Health Needs Assessments
5. Allowed linkage is between the data sets contained within points 1, 2 and 3.
6. Aggregation of required data for CCG management use will be completed by Optum Health Solutions Limited or the CCG as instructed by the CCG.
7. Aggregated reports with small number suppression will be sent to the CCG.
8. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set.

No data is sent to, processed or stored by MedeAnalytics.
Optum Health Solutions Limited will not reidentify any data.


Project 6 — NIC-47118-L9M1G

Type of data: information not disclosed for TRE projects

Opt outs honoured: N, Y

Legal basis: Health and Social Care Act 2012, Section 251 approval is in place for the flow of identifiable data

Purposes: ()

Sensitive: Sensitive

When:2017.06 — 2017.05.

Access method: Ongoing

Data-controller type:

Sublicensing allowed:

Datasets:

  1. Children and Young People's Health Services Data Set
  2. Improving Access to Psychological Therapies Data Set
  3. Local Provider Data - Acute
  4. Local Provider Data - Ambulance
  5. Local Provider Data - Community
  6. Local Provider Data - Demand for Service
  7. Local Provider Data - Diagnostic Services
  8. Local Provider Data - Emergency Care
  9. Local Provider Data - Experience Quality and Outcomes
  10. Local Provider Data - Public Health & Screening services
  11. Local Provider Data - Mental Health
  12. Local Provider Data - Other not elsewhere classified
  13. Local Provider Data - Population Data
  14. Mental Health and Learning Disabilities Data Set
  15. Mental Health Minimum Data Set
  16. Mental Health Services Data Set
  17. SUS Accident & Emergency data
  18. SUS Admitted Patient Care data
  19. SUS Outpatient data
  20. SUS data (Accident & Emergency, Admitted Patient Care & Outpatient)
  21. SUS for Commissioners
  22. Public Health and Screening Services-Local Provider Flows
  23. Primary Care Services-Local Provider Flows
  24. Population Data-Local Provider Flows
  25. Other Not Elsewhere Classified (NEC)-Local Provider Flows
  26. Mental Health-Local Provider Flows
  27. Maternity Services Data Set
  28. Experience, Quality and Outcomes-Local Provider Flows
  29. Emergency Care-Local Provider Flows
  30. Diagnostic Services-Local Provider Flows
  31. Diagnostic Imaging Dataset
  32. Demand for Service-Local Provider Flows
  33. Community-Local Provider Flows
  34. Children and Young People Health
  35. Ambulance-Local Provider Flows
  36. Acute-Local Provider Flows
  37. SUS (Accident & Emergency, Inpatient and Outpatient data)
  38. Local Provider Data - Acute, Ambulance, Community, Demand for Service, Diagnostic Services, Emergency Care, Experience Quality and Outcomes, Mental Health, Other not elsewhere classified, Population Data, Public Health & Screening services

Objectives:

Invoice Validation
As an approved Controlled Environment for Finance (CEfF), the data processor receives SUS data identifiable at the level of NHS number according to S.251 CAG 7-07(a) and (c)/2013, to undertake invoice validation on behalf of the CCG. NHS number is only used to confirm the accuracy of backing-data sets and will not be shared outside of the CEfF. The CCG are advised by the CSU whether payment for invoices can be made or not.

Pseudonymised – SUS and Local Flows
To use pseudonymised data to provide intelligence to support commissioning of health services. The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets.
The CCGs commission services from a range of providers covering a wide array of services. Each of the data flow categories requested supports the commissioned activity of one or more providers.

Pseudonymised – Mental Health, Maternity, IAPT, CYPHS and DIDS
To use pseudonymised data for the following datasets to provide intelligence to support commissioning of health services :
- Mental Health Minimum Data Set (MHMDS)
- Mental Health Learning Disability Data Set (MHLDDS)
- Mental Health Services Data Set (MHSDS)
- Maternity Services Data Set (MSDS)
- Improving Access to Psychological Therapy (IAPT)
- Child and Young People Health Service (CYPHS)
- Diagnostic Imaging Data Set (DIDS)
The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets.

No record level data will be linked other than as specifically detailed within this application/agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from the HSCIC will not be national data, but only that data relating to the specific locality of interest of the applicant.

Expected Benefits:

Invoice Validation
1. Financial validation of activity
2. CCG Budget control
3. Commissioning and performance management
4. Meeting commissioning objectives without compromising patient confidentiality
5. The avoidance of misapproproation of public funds to ensure the on-going delivery of patient

Pseudonymised – SUS and Local Flows
1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, Integrated care and pathways.
a. Analysis to support full business cases.
b. Develop business models.
c. Monitor In year projects.
2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types.
3. Health economic modelling using:
a. Analysis on provider performance against 18 weeks wait targets.
b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients.
c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway.
d. Analysis to understand emergency care and linking A&E and Emergency Urgent Care Flows (EUCC) flows.
4. Commissioning cycle support for grouping and re-costing previous activity.
5. Enables monitoring of:
a. CCG outcome indicators.
b. Non-financial validation of activity.
c. Successful delivery of integrated care within the CCG.
d. Checking frequent or multiple attendances to improve early intervention and avoid admissions.
e. Case management.
f. Care service planning.
g. Commissioning and performance management.
h. List size verification by GP practices.
i. Understanding the care of patients in nursing homes.
6. Feedback to NHS service providers on data quality at an aggregate and individual record level – only on data initially provided by the service providers.


Pseudonymised – Mental Health, Maternity, IAPT, CYPHS and DIDS
1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, Integrated care and pathways.
a. Analysis to support full business cases.
b. Develop business models.
c. Monitor In year projects.
2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types.
3. Health economic modelling using:
a. Analysis on provider performance against 18 weeks wait targets.
b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients.
c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway.
d. Analysis to understand emergency care and linking A&E and Emergency Urgent Care Flows (EUCC) flows.
4. Commissioning cycle support for grouping and re-costing previous activity.
5. Enables monitoring of:
a. CCG outcome indicators.
b. Non-financial validation of activity.
c. Successful delivery of integrated care within the CCG.
d. Checking frequent or multiple attendances to improve early intervention and avoid admissions.
e. Case management.
f. Care service planning.
g. Commissioning and performance management.
h. List size verification by GP practices.
i. Understanding the care of patients in nursing homes.
6. Feedback to NHS service providers on data quality at an aggregate and individual record level – only on data initially provided by the service providers.

Outputs:

Invoice Validation
1. Addressing poor data quality issues
2. Production of reports for business intelligence
3. Budget reporting
4. Validation of invoices for non-contracted events

Pseudonymised – SUS and Local Flows
1. Commissioner reporting:
a. Summary by provider view - plan & actuals year to date (YTD).
b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD.
c. Summary by provider view - activity & finance variance by POD.
d. Planned care by provider view - activity & finance plan & actuals YTD.
e. Planned care by POD view - activity plan & actuals YTD.
f. Provider reporting.
g. Statutory returns.
h. Statutory returns - monthly activity return.
i. Statutory returns - quarterly activity return.
j. Delayed discharges.
k. Quality & performance referral to treatment reporting.
2. Readmissions analysis.
3. Production of aggregate reports for CCG Business Intelligence.
4. Production of project / programme level dashboards.
5. Monitoring of acute / community / mental health quality matrix.
6. Clinical coding reviews / audits.
7. Budget reporting down to individual GP Practice level.
8. GP Practice level dashboard reports include high flyers.

Pseudonymised – Mental Health, Maternity, IAPT, CYPHS and DIDS
1. 1) Commissioner reporting:
a. Summary by provider view - plan & actuals year to date (YTD).
b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD.
c. Summary by provider view - activity & finance variance by POD.
d. Planned care by provider view - activity & finance plan & actuals YTD.
e. Planned care by POD view - activity plan & actuals YTD.
f. Provider reporting.
g. Statutory returns.
h. Statutory returns - monthly activity return.
i. Statutory returns - quarterly activity return.
j. Delayed discharges.
k. Quality & performance referral to treatment reporting.
2. Readmissions analysis.
3. Production of aggregate reports for CCG Business Intelligence.
4. Production of project / programme level dashboards.
5. Monitoring of acute / community / mental health quality matrix.
6. Clinical coding reviews / audits.
7. Budget reporting down to individual GP Practice level.
8. GP Practice level dashboard reports include high flyers.

Processing:

Prior to the release of identifiable data by North West DSCRO, Type 2 objections will be applied and the relevant patient’s data redacted.
Invoice Validation
1. SUS Data is sent from the SUS Repository to GEM DSCRO.
2. GEM DSCRO pushes a one-way data flow of SUS data into the Controlled Environment for Finance (CEfF) in the Arden & GEM CSU.
3. The CSU carry out the following processing activities within the CEfF for invoice validation purposes:
a. Checking the individual is registered to a particular Clinical Commissioning Group (CCG) and associated with an invoice from the national SUS data flow to validate the corresponding record in the backing data flow
b. Once the backing information is received, this will be checked against national NHS and local commissioning policies as well as being checked against system access and reports provided by the HSCIC to confirm the payments are:
i. In line with Payment by Results tariffs
ii. are in relation to a patient registered with a CCG GP or resident within the CCG area.
iii. The health care provided should be paid by the CCG in line with CCG guidance. 
4. The CCG are notified that the invoice has been validated and can be paid. Any discrepancies or non-validated invoices are investigated and resolved between the CSU CEfF team and the provider meaning that no identifiable data needs to be sent to the CCG. The CCG only receives notification to pay and management reporting detailing the total quantum of invoices received pending, processed etc.

Pseudonymised – SUS and Local Flows
Data Processor 1 – Arden & GEM CSU:
1. GEM Data Services for Commissioners Regional Office (DSCRO) receives a flow of SUS identifiable data for the CCG from the SUS Repository. GEM DSCRO also receives identifiable local provider data for the CCG directly from Providers.
2. Data quality management and pseudonymisation of data is completed by the DSCRO and the pseudonymised data is then passed securely to Arden & GEM CSU for the addition of derived fields, linkage of data sets and analysis.
3. Arden & GEM CSU then pass the processed, pseudonymised and linked data to the CCG who analyse the data to see patient journeys for pathways or service design, re-design and de-commissioning.
4. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression in line with the HES analysis guide.

Data Processor 2 – Optum:
1. GEM Data Services for Commissioners Regional Office (DSCRO) receives a flow of SUS identifiable data for the CCG from the SUS Repository. GEM DSCRO also receives identifiable local provider data for the CCG directly from Providers.
2. Data quality management and pseudonymisation of data is completed by the DSCRO and the pseudonymised data is then passed securely to Optum for the addition of derived fields, linkage of data sets and analysis.
3. Optum then pass the processed, pseudonymised and linked data to the CCG who analyse the data to see patient journeys for pathways or service design, re-design and de-commissioning.
4. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression in line with the HES analysis guide.


Pseudonymised – Mental Health, MSDS, IAPT, CYPHS and DIDS
1. GEM Data Services for Commissioners Regional Office (DSCRO) receives a flow of data identifiable at the level of NHS number for Mental Health (MHSDS, MHMDS, MHLDDS) and Maternity (MSDS). GEM DSCRO also receive a flow of pseudonymised patient level data for each CCG for Improving Access to Psychological Therapies (IAPT), Child and Young People’s Health (CYPHS) and Diagnostic Imaging (DIDS) for commissioning purposes
2. Data quality management and pseudonymisation of data is completed by GEM DSCRO and the pseudonymised data is then passed securely to Arden & GEM CSU for the addition of derived fields, linkage of data sets and analysis.
3. Arden & GEM CSU then pass the processed, pseudonymised and linked data to the CCG who analyse the data to see patient journeys for pathways or service design, re-design and de-commissioning.
4. The CCG analyses the data to see patient journeys for pathway or service design, re-design and de-commissioning
5. Aggregation of required data for CCG management use can be completed by the CSU or the CCG
6. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression in line with the HES analysis guide.