NHS Digital Data Release Register - reformatted

NHS Oldham CCG projects

331 data files in total were disseminated unsafely (information about files used safely is missing for TRE/"system access" projects).


🚩 NHS Oldham CCG was sent multiple files from the same dataset, in the same month, both with optouts respected and with optouts ignored. NHS Oldham CCG may not have compared the two files, but the identifiers are consistent between datasets, and outside of a good TRE NHS Digital can not know what recipients actually do.

GDPPR COVID-19 – CCG - Pseudo — DARS-NIC-388913-L5D5B

Type of data: information not disclosed for TRE projects

Opt outs honoured: No - Statutory exemption to flow confidential data without consent, Anonymised - ICO Code Compliant (Statutory exemption to flow confidential data without consent)

Legal basis: CV19: Regulation 3 (4) of the Health Service (Control of Patient Information) Regulations 2002, CV19: Regulation 3 (4) of the Health Service (Control of Patient Information) Regulations 2002; Health and Social Care Act 2012 - s261(5)(d)

Purposes: No (Clinical Commissioning Group (CCG), Sub ICB Location)

Sensitive: Sensitive

When:DSA runs 2020-09-01 — 2021-03-31 2021.01 — 2021.05.

Access method: One-Off, Frequent Adhoc Flow

Data-controller type: NHS BOLTON CCG, NHS BURY CCG, NHS HEYWOOD, MIDDLETON AND ROCHDALE CCG, NHS MANCHESTER CCG, NHS OLDHAM CCG, NHS SALFORD CCG, NHS STOCKPORT CCG, NHS TAMESIDE AND GLOSSOP CCG, NHS TRAFFORD CCG, NHS WIGAN BOROUGH CCG, NHS GREATER MANCHESTER ICB - 00T, NHS GREATER MANCHESTER ICB - 00V, NHS GREATER MANCHESTER ICB - 00Y, NHS GREATER MANCHESTER ICB - 01D, NHS GREATER MANCHESTER ICB - 01G, NHS GREATER MANCHESTER ICB - 01W, NHS GREATER MANCHESTER ICB - 01Y, NHS GREATER MANCHESTER ICB - 02A, NHS GREATER MANCHESTER ICB - 02H, NHS GREATER MANCHESTER ICB - 14L

Sublicensing allowed: No

Datasets:

  1. GPES Data for Pandemic Planning and Research (COVID-19)
  2. COVID-19 General Practice Extraction Service (GPES) Data for Pandemic Planning and Research (GDPPR)

Objectives:

NHS Digital has been provided with the necessary powers to support the Secretary of State’s response to COVID-19 under the COVID-19 Public Health Directions 2020 (COVID-19 Directions) and support various COVID-19 purposes, the data shared under this agreement can be used for these specified purposes except where they would require the reidentification of individuals.

GPES data for pandemic planning and research (GDPPR COVID 19)
To support the response to the outbreak, NHS Digital has been legally directed to collect and analyse healthcare information about patients from their GP record for the duration of the COVID-19 emergency period under the COVID-19 Directions.
The data which NHS Digital has collected and is providing under this agreement includes coded health data, which is held in a patient’s GP record, such as details of:
• diagnoses and findings
• medications and other prescribed items
• investigations, tests and results
• treatments and outcomes
• vaccinations and immunisations

Details of any sensitive SNOMED codes included in the GDPPR data set can be found in the Reference Data and GDPPR COVID 19 user guides hosted on the NHS Digital website. SNOMED codes are included in GDPPR data.
There are no free text record entries in the data.

The Controller will use the pseudonymised GDPPR COVID 19 data to provide intelligence to support their local response to the COVID-19 emergency. The data is analysed so that health care provision can be planned to support the needs of the population within the CCG area for the COVID-19 purposes.

Such uses of the data include but are not limited to:

• Analysis of missed appointments - Analysis of local missed/delayed referrals due to the COVID-19 crisis to estimate the potential impact and to estimate when ‘normal’ health and care services may resume, linked to Paragraph 2.2.3 of the COVID-19 Directions.

• Patient risk stratification and predictive modelling - to highlight patients at risk of requiring hospital admission due to COVID-19, computed using algorithms executed against linked de-identified data, and identification of future service delivery models linked to Paragraph 2.2.2 of the COVID-19 Directions. As with all risk stratification, this would lead to the identification of the characteristics of a cohort that could subsequently, and separately, be used to identify individuals for intervention. However the identification of individuals will not be done as part of this data sharing agreement, and the data shared under this agreement will not be reidentified.

• Resource Allocation - In order to assess system wide impact of COVID-19, the GDPPR COVID 19 data will allow reallocation of resources to the worst hit localities using their expertise in scenario planning, clinical impact and assessment of workforce needs, linked to Paragraph 2.2.4 of the COVID-19 Directions:

The data may only be linked by the Data Controller or their respective Data Processor, to other pseudonymised datasets which it holds under a current data sharing agreement only where such data is provided for the purposes of general commissioning by NHS Digital. The Health Service Control of Patient Information Regulations (COPI) will also apply to any data linked to the GDPPR data.
The linked data may only be used for purposes stipulated within this agreement and may only be held and used whilst both data sharing agreements are live and in date. Using the linked data for any other purposes, including non-COVID-19 purposes would be considered a breach of this agreement. Reidentification of individuals is not permitted under this DSA.

LEGAL BASIS FOR PROCESSING DATA:
Legal Basis for NHS Digital to Disseminate the Data:
NHS Digital is able to disseminate data with the Recipients for the agreed purposes under a notice issued to NHS Digital by the Secretary of State for Health and Social Care under Regulation 3(4) of the Health Service Control of Patient Information Regulations (COPI) dated 17 March 2020 (the NHSD COPI Notice).
The Recipients are health organisations covered by Regulation 3(3) of COPI and the agreed purposes (paragraphs 2.2.2-2.2.4 of the COVID-19 Directions, as stated below in section 5a) for which the disseminated data is being shared are covered by Regulation 3(1) of COPI.

Under the Health and Social Care Act, NHS Digital is relying on section 261(5)(d) – necessary or expedient to share the disseminated data with the Recipients for the agreed purposes.


Legal Basis for Processing:
The Recipients are able to receive and process the disseminated data under a notice issued to the Recipients by the Secretary of State for Health and Social Care under Regulation 3(4) of COPI dated 20th March (the Recipient COPI Notice section 2).

The Secretary of State has issued notices under the Health Service Control of Patient Information Regulations 2002 requiring the following organisations to process information:

Health organisations

“Health Organisations” defined below under Regulation 3(3) of COPI includes CCGs for the reasons explained below. These are clinically led statutory NHS bodies responsible for the planning and commissioning of health care services for their local area

The Secretary of State for Health and Social Care has issued NHS Digital with a Notice under Regulation 3(4) of the National Health Service (Control of Patient Information Regulations) 2002 (COPI) to require NHS Digital to share confidential patient information with organisations permitted to process confidential information under Regulation 3(3) of COPI. These include:

• persons employed or engaged for the purposes of the health service

Under Section 26 of the Health and Social Care Act 2012, CCG’s have a duty to provide and manage health services for the population.

Regulation 7 of COPI includes certain limitations. The request has considered these limitations, considering data minimisation, access controls and technical and organisational measures.

Under GDPR, the Recipients can rely on Article 6(1)(c) – Legal Obligation to receive and process the Disclosed Data from NHS Digital for the Agreed Purposes under the Recipient COPI Notice. As this is health information and therefore special category personal data the Recipients can also rely on Article 9(2)(h) – preventative or occupational medicine and para 6 of Schedule 1 DPA – statutory purpose.

Expected Benefits:

• Manage demand and capacity
• Reallocation of resources
• Bring in additional workforce support
• Assists commissioners to make better decisions to support patients
• Identifying COVID-19 trends and risks to public health
• Enables CCGs to provide guidance and develop policies to respond to the outbreak
• Controlling and helping to prevent the spread of the virus

Outputs:

• Operational planning to predict likely demand on primary, community and acute service for vulnerable patients due to the impact of COVID-19
• Analysis of resource allocation
• Investigating and monitoring the effects of COVID-19
• Patient Stratification in relation to COVID-19, such as:
o Patients at highest risk of admission
o Frail and elderly
o Patients that are currently in hospital
o Patients with prescriptions related to COVID-19
o Patients recently Discharged from hospital
For avoidance of doubt these are pseudonymised patient cohorts, not identifiable.

Processing:

PROCESSING CONDITIONS:
Data must only be used for the purposes stipulated within this Data Sharing Agreement. Any additional disclosure / publication will require further approval from NHS Digital.

Data Processors must only act upon specific instructions from the Data Controller.

All access to data is managed under Role-Based Access Controls. Users can only access data authorised by their role and the tasks that they are required to undertake.

Patient level data will not be linked other than as specifically detailed within this Data Sharing Agreement.

NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract i.e.: employees, agents and contractors of the Data Recipient who may have access to that data).

The Recipients will take all required security measures to protect the disseminated data and they will not generate copies of their cuts of the disseminated data unless this is strictly necessary. Where this is necessary, the Recipients will keep a log of all copies of the disseminated data and who is controlling them and ensure these are updated and destroyed securely.

Onward sharing of patient level data is not permitted under this agreement. Only aggregated reports with small number suppression can be shared externally.

The data disseminated will only be used for COVID-19 GDPPR purposes as described in this DSA, any other purpose is excluded.

SEGREGATION:
Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked.

AUDIT
All access to data is auditable by NHS Digital in accordance with the Data Sharing Framework Contract and NHS Digital terms.
Under the Local Audit and Accountability Act 2014, section 35, Secretary of State has power to audit all data that has flowed, including under COPI.

DATA MINIMISATION:
Data Minimisation in relation to the data sets listed within the application are listed below:

• Patients who are normally registered and/or resident within the CCG region (including historical activity where the patient was previously registered or resident in another commissioner area).
and/or
• Patients treated by a provider where the CCG is the host/co-ordinating commissioner and/or has the primary responsibility for the provider services in the local health economy.
and/or
• Activity identified by the provider and recorded as such within national systems (such as SUS+) as for the attention of the CCG.

The Data Services for Commissioners Regional Office (DSCRO) obtains the following data sets:
- GDPPR COVID 19 Data
Pseudonymisation is completed within the DSCRO and is then disseminated as follows:
1. Pseudonymised GDPPR COVID 19 data is securely transferred from the DSCRO to the Data Controller / Processor
2. Aggregation of required data will be completed by the Controller (or the Processor as instructed by the Controller).
3. Patient level data may not be shared by the Controller (or any of its processors).


DSfC - NHS Oldham CCG; RS — DARS-NIC-47141-V2B4Q

Type of data: information not disclosed for TRE projects

Opt outs honoured: N, Y, No - data flow is not identifiable, Yes - patient objections upheld, Identifiable (Section 251, Section 251 NHS Act 2006)

Legal basis: Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Section 251 approval is in place for the flow of identifiable data, National Health Service Act 2006 - s251 - 'Control of patient information'. , Health and Social Care Act 2012 – s261(7), Health and Social Care Act 2012 – s261(7)

Purposes: No (Clinical Commissioning Group (CCG), Sub ICB Location)

Sensitive: Sensitive

When:DSA runs 2019-07-28 — 2022-07-27 2018.06 — 2021.05.

Access method: Frequent adhoc flow, Frequent Adhoc Flow, One-Off

Data-controller type: NHS OLDHAM CCG, NHS GREATER MANCHESTER ICB - 00Y

Sublicensing allowed: No

Datasets:

  1. Acute-Local Provider Flows
  2. Ambulance-Local Provider Flows
  3. Children and Young People Health
  4. Community-Local Provider Flows
  5. Demand for Service-Local Provider Flows
  6. Diagnostic Imaging Dataset
  7. Diagnostic Services-Local Provider Flows
  8. Emergency Care-Local Provider Flows
  9. Experience, Quality and Outcomes-Local Provider Flows
  10. Improving Access to Psychological Therapies Data Set
  11. Maternity Services Data Set
  12. Mental Health and Learning Disabilities Data Set
  13. Mental Health Minimum Data Set
  14. Mental Health Services Data Set
  15. Mental Health-Local Provider Flows
  16. Other Not Elsewhere Classified (NEC)-Local Provider Flows
  17. Population Data-Local Provider Flows
  18. Primary Care Services-Local Provider Flows
  19. Public Health and Screening Services-Local Provider Flows
  20. SUS for Commissioners

Objectives:

Risk Stratification
Risk stratification is a tool for identifying and predicting which patients are at high risk or are likely to be at high risk and prioritising the management of their care in order to prevent worse outcomes.
To conduct risk stratification Secondary User Services (SUS+) data, identifiable at the level of NHS number is linked with Primary Care data (from GPs) and an algorithm is applied to produce risk scores. Risk Stratification provides focus for future demands by enabling commissioners to prepare plans for patients. Commissioners can then prepare plans for patients who may require high levels of care. Risk Stratification also enables General Practitioners (GPs) to better target intervention in Primary Care.
The legal basis for this to occur is under Section 251 of NHS Act 2006 (CAG 7-04(a)).
Risk Stratification will be conducted by Arden and GEM CSU

Commissioning
To use pseudonymised data to provide intelligence to support the commissioning of health services. The data (containing both clinical and financial information) is analysed so that health care provision can be planned to support the needs of the population within the CCG area.
The CCGs commission services from a range of providers covering a wide array of services. Each of the data flow categories requested supports the commissioned activity of one or more providers.
The following pseudonymised datasets are required to provide intelligence to support commissioning of health services:
- Secondary Uses Service (SUS+)
- Local Provider Flows
o Acute
o Ambulance
o Community
o Demand for Service
o Diagnostic Service
o Emergency Care
o Experience, Quality and Outcomes
o Mental Health
o Other Not Elsewhere Classified
o Population Data
o Primary Care Services
o Public Health Screening
- Mental Health Minimum Data Set (MHMDS)
- Mental Health Learning Disability Data Set (MHLDDS)
- Mental Health Services Data Set (MHSDS)
- Maternity Services Data Set (MSDS)
- Improving Access to Psychological Therapy (IAPT)
- Child and Young People Health Service (CYPHS)
- Diagnostic Imaging Data Set (DIDS)
The pseudonymised data is required to for the following purposes:
§ Population health management:
• Understanding the interdependency of care services
• Targeting care more effectively
• Using value as the redesign principle
§ Data Quality and Validation – allowing data quality checks on the submitted data
§ Thoroughly investigating the needs of the population, to ensure the right services are available for individuals when and where they need them
§ Understanding cohorts of residents who are at risk of becoming users of some of the more expensive services, to better understand and manage those needs
§ Monitoring population health and care interactions to understand where people may slip through the net, or where the provision of care may be being duplicated
§ Modelling activity across all data sets to understand how services interact with each other, and to understand how changes in one service may affect flows through another
§ Service redesign
§ Health Needs Assessment – identification of underlying disease prevalence within the local population
§ Patient stratification and predictive modelling - to identify specific patients at risk of requiring hospital admission and other avoidable factors such as risk of falls, computed using algorithms executed against linked de-identified data, and identification of future service delivery models

The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets.
Processing for commissioning will be conducted by:
Data Processor 1 – Arden and GEM CSU conduct Risk Stratification as instructed by the CCG. The CSU also processes SUS, Local Provider flows, mental health, IAPT, MSDS, CYPHS and DIDS for the purpose of commissioning.
Data Processor 2 - Greater Manchester Shared Services (GMSS) have taken BI services in house and are now hosted by Oldham CCG. AGEM CSU flow data to a small team within GMSS. Access to the data is restricted to this team who access and manage the data. These BI services were previously provided by North West CSU.

GMSS deliver a range of services including;
effective use of resources;
data quality;
information governance;
market management;
provider contract & performance management;

To enable GMSS to support these services a team within the GMSS have controlled access to SUS data at a pseudonymised level. Access to the data is controlled by AGEM CSU using users’ roles to ensure only appropriate users gain access to pseudonymised data. Data can then be used for reporting to support the range of services being offered to CCGs, and CCGs receive aggregate level reports from GMSS. GMSS staff are separate from Oldham CCG staff and accordingly have separate functions and roles.

Data Processor 3 - Advancing Quality Alliance (AQuA) provide support for a range of quality improvement programmes including the NW Advancing Quality Programme. They will identify cohorts of patients within specific disease groups for further analysis to help drive quality improvements across the region.

Data Processor 4 - The Academic Health Sciences Network (Utilisation Management Team) receive Pseudonymised SUS data for Greater Manchester patients. They analyse the data to look at processes rather than patients, for example, A&E performance, process times, bed days as well as ‘deep dives’ to support clinical reviews for CCGs.

Advancing Quality Alliance (AQuA) and the Academic Health Science Network are hosted by Salford Royal NHS Foundation Trust who are the legal entity for both.

Yielded Benefits:

N/A

Expected Benefits:

Risk Stratification
Risk stratification promotes improved case management in primary care and will lead to the following benefits being realised:
1. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these.
2. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services thus allowing early intervention.
3. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required.
4. Supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework by allowing for more targeted intervention in primary care.
5. Better understanding of local population characteristics through analysis of their health and healthcare outcomes
All of the above lead to improved patient experience through more effective commissioning of services.

Commissioning
1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, integrated care and pathways.
a. Analysis to support full business cases.
b. Develop business models.
c. Monitor In year projects.
2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types.
3. Health economic modelling using:
a. Analysis on provider performance against 18 weeks wait targets.
b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients.
c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway.
d. Analysis to understand emergency care and linking A&E and Emergency Urgent Care Flows (EUCC).
4. Commissioning cycle support for grouping and re-costing previous activity.
5. Enables monitoring of:
a. CCG outcome indicators.
b. Financial and Non-financial validation of activity.
c. Successful delivery of integrated care within the CCG.
d. Checking frequent or multiple attendances to improve early intervention and avoid admissions.
e. Case management.
f. Care service planning.
g. Commissioning and performance management.
h. List size verification by GP practices.
i. Understanding the care of patients in nursing homes.
6. Feedback to NHS service providers on data quality at an aggregate and individual record level – only on data initially provided by the service providers.
7. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these.
8. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services and early intervention of appropriate care.
9. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required.
10. Potentially reduced premature mortality by more targeted intervention in primary care, which supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework.
11. Better understanding of the health of and the variations in health outcomes within the population to help understand local population characteristics.
12. Better understanding of contract requirements, contract execution, and required services for management of existing contracts, and to assist with identification and planning of future contracts
13. Insights into patient outcomes, and identification of the possible efficacy of outcomes-based contracting opportunities.

Outputs:

Risk Stratification
1. As part of the risk stratification processing activity detailed above, GPs have access to the risk stratification tool which highlights patients for whom the GP is responsible and have been classed as at risk. The only identifier available to GPs is the NHS numbers of their own patients. Any further identification of the patients will be completed by the GP on their own systems.
2. Output from the risk stratification tool will provide aggregate reporting of number and percentage of population found to be at risk.
3. Record level output will be available for commissioners (of the CCG), pseudonymised at patient level.
4. GP Practices will be able to view the risk scores for individual patients with the ability to display the underlying SUS+ data for the individual patients when it is required for direct care purposes by someone who has a legitimate relationship with the patient.
5. The CCG will be able to target specific patient groups and enable clinicians with the duty of care for the patient to offer appropriate interventions. The CCG will also be able to:
o Stratify populations based on: disease profiles; conditions currently being treated; current service use; pharmacy use and risk of future overall cost
o Plan work for commissioning services and contracts
o Set up capitated budgets
o Identify health determinants of risk of admission to hospital, or other adverse care outcomes.

Commissioning
1. Commissioner reporting:
a. Summary by provider view - plan & actuals year to date (YTD).
b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD.
c. Summary by provider view - activity & finance variance by POD.
d. Planned care by provider view - activity & finance plan & actuals YTD.
e. Planned care by POD view - activity plan & actuals YTD.
f. Provider reporting.
g. Statutory returns.
h. Statutory returns - monthly activity return.
i. Statutory returns - quarterly activity return.
j. Delayed discharges.
k. Quality & performance referral to treatment reporting.
2. Readmissions analysis.
3. Production of aggregate reports for CCG Business Intelligence.
4. Production of project / programme level dashboards.
5. Monitoring of acute / community / mental health quality matrix.
6. Clinical coding reviews / audits.
7. Budget reporting down to individual GP Practice level.
8. GP Practice level dashboard reports include high flyers.
9. Comparators of CCG performance with similar CCGs as set out by a specific range of care quality and performance measures detailed activity and cost reports
10. Data Quality and Validation measures allowing data quality checks on the submitted data
11. Contract Management and Modelling
12. Patient Stratification, such as:
o Patients at highest risk of admission
o Most expensive patients (top 15%)
o Frail and elderly
o Patients that are currently in hospital
o Patients with most referrals to secondary care
o Patients with most emergency activity
o Patients with most expensive prescriptions
o Patients recently moving from one care setting to another
i. Discharged from hospital
ii. Discharged from community

Processing:

Data must only be used as stipulated within this Data Sharing Agreement.

Data Processors must only act upon specific instructions from the Data Controller.

Data can only be stored at the addresses listed under storage addresses.

The Data Controller and any Data Processor will only have access to records of patients of residence and registration within the CCG.

Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data.

All access to data is managed under Roles-Based Access Controls

No patient level data will be linked other than as specifically detailed within this agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality and that data required by the applicant.

NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data)

The DSCRO (part of NHS Digital) will apply Type 2 objections before any identifiable data leaves the DSCRO.

CCGs should work with general practices within their CCG to help them fulfil data controller responsibilities regarding flow of identifiable data into risk stratification tools.

Segregation
Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked.

All access to data is auditable by NHS Digital.


Risk Stratification
1. Identifiable SUS+ data is obtained from the SUS Repository to the Data Services for Commissioners Regional Office (DSCRO).
2. Data quality management and standardisation of data is completed by the DSCRO and the data identifiable at the level of NHS number is transferred securely to Arden and GEM CSU, who hold the SUS+ data within the secure Data Centre on N3.
3. Identifiable GP Data is securely sent from the GP system to Arden and GEM CSU.
4. SUS+ data is linked to GP data in the risk stratification tool by the data processor.
5. As part of the risk stratification processing activity, GPs have access to the risk stratification tool within the data processor, which highlights patients with whom the GP has a legitimate relationship and have been classed as at risk. The only identifier available to GPs is the NHS numbers of their own patients. Any further identification of the patients will be completed by the GP on their own systems.
6. Once Arden and GEM CSU has completed the processing, the CCG can access the online system via a secure connection to access the data pseudonymised at patient level.


Commissioning
The Data Services for Commissioners Regional Office (DSCRO) obtains the following data sets:
1. SUS+
2. Local Provider Flows (received directly from providers)
a. Acute
b. Ambulance
c. Community
d. Demand for Service
e. Diagnostic Service
f. Emergency Care
g. Experience, Quality and Outcomes
h. Mental Health
i. Other Not Elsewhere Classified
j. Population Data
k. Primary Care Services
l. Public Health Screening
3. Mental Health Minimum Data Set (MHMDS)
4. Mental Health Learning Disability Data Set (MHLDDS)
5. Mental Health Services Data Set (MHSDS)
6. Maternity Services Data Set (MSDS)
7. Improving Access to Psychological Therapy (IAPT)
8. Child and Young People Health Service (CYPHS)
9. Diagnostic Imaging Data Set (DIDS)
Data quality management and pseudonymisation is completed within the DSCRO and is then disseminated as follows:

Data Processor 1 – Arden and GEM CSU
1. Pseudonymised SUS+, Local Provider data, Mental Health data (MHSDS, MHMDS, MHLDDS), Maternity data (MSDS), Improving Access to Psychological Therapies data (IAPT), Child and Young People’s Health data (CYPHS) and Diagnostic Imaging data (DIDS) only is securely transferred from the DSCRO to Arden and GEM CSU.
2. Arden and GEM CSU add derived fields, link data and provide analysis to:
a. See patient journeys for pathways or service design, re-design and de-commissioning.
b. Check recorded activity against contracts or invoices and facilitate discussions with providers.
c. Undertake population health management
d. Undertake data quality and validation checks
e. Thoroughly investigate the needs of the population
f. Understand cohorts of residents who are at risk
g. Conduct Health Needs Assessments
3. Allowed linkage is between the data sets contained within point 1.
4. Arden and GEM CSU then pass the processed, pseudonymised and linked data to the CCG.
5. Aggregation of required data for CCG management use will be completed by Arden and GEM CSU or the CCG as instructed by the CCG.
6. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set.


Data Processor 2 – Greater Manchester Shared Services (GMSS) (via DP1):
1. Pseudonymised SUS, Local Provider data, Mental Health data (MHSDS, MHMDS, MHLDDS), Maternity data (MSDS) and Improving Access to Psychological Therapies data (IAPT) only is securely transferred from the DSCRO to Arden and GEM CSU.
2. Arden and GEM CSU add derived fields, link data and provide analysis.
3. Allowed linkage is between the data sets contained within point 1.
4. Arden and GEM CSU then pass the processed, pseudonymised and linked data to the Greater Manchester Shared Services (GMSS) hosted by NHS Oldham CCG.
GMSS analyse the data to see patient journeys for pathway or service design, re-design and de-commissioning.
5. GMSS then pass the processed pseudonymised data to the CCG
6. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared.


Data Processor 3 – Advancing Quality Alliance (AQuA) (via DP1):
1. Pseudonymised SUS, Local Provider data and Mental Health data (MHSDS, MHMDS, MHLDDS) only is securely transferred from the DSCRO to Arden and GEM CSU.
Arden and GEM CSU add derived fields, link data and provide analysis.
2. Allowed linkage is between the data sets contained within point 1.
3. Arden and GEM CSU then pass the processed, pseudonymised and linked data to Advancing Quality Alliance (AQuA) to provide support for a range of quality improvement programmes including the NW Advancing Quality Programme. AQuA identifies cohorts of patients within specific disease groups for further analysis to help drive quality improvements across the region.
4. AQuA produces aggregate reports only with small number suppression. Only aggregate reports are sent to the CCG.


Data Processor 4 – Academic Health Sciences Network (Utilisation Management Team) (SUS Only) (via DP1):
1. Pseudonymised SUS data only is securely transferred from the DSCRO to Arden and GEM CSU.
2. Arden and GEM CSU add derived fields, link data and provide analysis.
3. Allowed linkage is between the data sets contained within point 1.
Arden and GEM CSU then pass the processed, pseudonymised and linked data to the Academic Health Service (Utilisation Management Team) (AHSN UMT)
4. The AHSN UMT receive pseudonymised SUS data for Greater Manchester patients. They analyse the data to look at processes rather than patients, for example, A&E performance, process times, bed days as well as ‘deep dives’ to support clinical reviews for CCGs.
5. AHSN UMT produces aggregate reports only with small number suppression. Only aggregate reports are sent to the CCG


Project 3 — DARS-NIC-120805-F9Q4D

Type of data: information not disclosed for TRE projects

Opt outs honoured: No - data flow is not identifiable (Section 251, Does not include the flow of confidential data)

Legal basis: Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii)

Purposes: ()

Sensitive: Sensitive

When:2018.06 — 2019.04.

Access method: Frequent adhoc flow, Frequent Adhoc Flow

Data-controller type:

Sublicensing allowed:

Datasets:

  1. Acute-Local Provider Flows
  2. Ambulance-Local Provider Flows
  3. Community-Local Provider Flows
  4. Diagnostic Services-Local Provider Flows
  5. Emergency Care-Local Provider Flows

Objectives:

Commissioning
To use pseudonymised data which will be shared between multiple CCGs which will be listed within the Data Sharing Agreement, to provide intelligence to support commissioning of health services. The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets.
The CCGs commission services from a range of providers covering a wide array of services. Each of the data flow categories requested supports the commissioned activity of one or more providers.
The following pseudonymised datasets are required to provide intelligence to support commissioning of health services:
- Local Provider Flows
o Acute
o Ambulance
o Community
o Diagnostic Service
o Emergency Care
The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets.

The following CCGs are able to share record level data between the CCGs to enable collaborative reporting by their respective CCG analysts and Data Processor Analysts (Arden and GEM CSU):
- NHS Bury CCG
- NHS Heywood, Middleton and Rochdale CCG
- NHS Manchester CCG
- NHS Oldham CCG
The CCGs work together on a collaborative basis across to support each other in delivering their commissioning agendas. For example, they wish to carry out contract monitoring, e.g. SUS SLAM reconciliation, for all the four CCGs listed above where they are lead commissioner; or where a CCG provides a contract monitoring service for another CCG. The CCGs request approval (through this DARS amendment) to share the following datasets on a collaborative basis across the four CCGs , to be used for collaborative reporting in any combination of CCGs in the group, or at individual CCG level reporting as required; both by a CCG’s in house BI/Contract Analysts and by their Data Processor Analysts, Arden and GEM CSU:
• Local Provider Flows (for commissioning)

The CCGs may access the pseudonymised data of each CCG for the purpose of commissioning only. The data listed in Annex A of the DSA is the data that the CCGs will be allowed to access.

Expected Benefits:

Commissioning
1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, integrated care and pathways.
a. Analysis to support full business cases.
b. Develop business models.
c. Monitor In year projects.
2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types.
3. Health economic modelling using:
a. Analysis on provider performance against 18 weeks wait targets.
b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients.
c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway.
d. Analysis to understand emergency care and linking A&E and Emergency Urgent Care Flows (EUCC).
4. Commissioning cycle support for grouping and re-costing previous activity.
5. Enables monitoring of:
a. CCG outcome indicators.
b. Non-financial validation of activity.
c. Successful delivery of integrated care within the CCG.
d. Checking frequent or multiple attendances to improve early intervention and avoid admissions.
e. Case management.
f. Care service planning.
g. Commissioning and performance management.
h. List size verification by GP practices.
i. Understanding the care of patients in nursing homes.
6. Feedback to NHS service providers on data quality at an aggregate and individual record level – only on data initially provided by the service providers.

Outputs:

Commissioning
1. Commissioner reporting:
a. Summary by provider view - plan & actuals year to date (YTD).
b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD.
c. Summary by provider view - activity & finance variance by POD.
d. Planned care by provider view - activity & finance plan & actuals YTD.
e. Planned care by POD view - activity plan & actuals YTD.
f. Provider reporting.
g. Statutory returns.
h. Statutory returns - monthly activity return.
i. Statutory returns - quarterly activity return.
j. Delayed discharges.
k. Quality & performance referral to treatment reporting.
2. Readmissions analysis.
3. Production of aggregate reports for CCG Business Intelligence.
4. Production of project / programme level dashboards.
5. Monitoring of acute / community / mental health quality matrix.
6. Clinical coding reviews / audits.
7. Budget reporting down to individual GP Practice level.
8. GP Practice level dashboard reports include high flyers.

Processing:

Data must only be used as stipulated within this Data Sharing Agreement.

Data Processors must only act upon specific instructions from the Data Controller.

Data can only be stored at the addresses listed under storage addresses.

The Data Controller and any Data Processor will only have access to records of patients of residence and registration within the CCG.

Patient level data will not be shared outside of the CCG unless otherwise stipulated within this agreement or it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data.

No patient level data will be linked other than as specifically detailed within this agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality of interest of the applicant.
NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data)

Segregation
Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked.
All access to data is audited

Commissioning
The Data Services for Commissioners Regional Office (DSCRO) obtains the following data sets:
1. Local Provider Flows (received directly from providers)
o Acute
o Ambulance
o Community
o Diagnostic Service
o Emergency Care
Data quality management and pseudonymisation is completed within the DSCRO and is then disseminated as follows:
Data Processor 1 – Arden and Greater East Midlands Commissioning Support Unit
1) Pseudonymised Local Provider data only are securely transferred from the DSCRO to Arden and Greater East Midlands Commissioning Support Unit.
2) Arden and Greater East Midlands Commissioning Support Unit add derived fields, link data and provide analysis.
3) Allowed linkage is between the data sets contained within point 1.
4) Arden and Greater East Midlands Commissioning Support Unit then pass the processed, pseudonymised and linked data to each CCG. The CCG analyse the data to see patient journeys for pathways or service design, re-design and de-commissioning.
5) Aggregation of required data for CCG management use will be completed by Arden and Greater East Midlands Commissioning Support Unit or the CCG as instructed by the CCG.
6) Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared.


Project 4 — NIC-47141-V2B4Q

Type of data: information not disclosed for TRE projects

Opt outs honoured: N, Y

Legal basis: Health and Social Care Act 2012, Section 251 approval is in place for the flow of identifiable data

Purposes: ()

Sensitive: Sensitive

When:2017.06 — 2017.05.

Access method: Ongoing

Data-controller type:

Sublicensing allowed:

Datasets:

  1. Children and Young People's Health Services Data Set
  2. Improving Access to Psychological Therapies Data Set
  3. Local Provider Data - Acute
  4. Local Provider Data - Ambulance
  5. Local Provider Data - Community
  6. Local Provider Data - Demand for Service
  7. Local Provider Data - Diagnostic Services
  8. Local Provider Data - Emergency Care
  9. Local Provider Data - Experience Quality and Outcomes
  10. Local Provider Data - Mental Health
  11. Local Provider Data - Other not elsewhere classified
  12. Local Provider Data - Population Data
  13. Local Provider Data - Public Health & Screening services
  14. Mental Health and Learning Disabilities Data Set
  15. Mental Health Minimum Data Set
  16. Mental Health Services Data Set
  17. SUS Accident & Emergency data
  18. SUS Admitted Patient Care data
  19. SUS Outpatient data
  20. Maternity Services Dataset
  21. SUS data (Accident & Emergency, Admitted Patient Care & Outpatient)
  22. SUS for Commissioners
  23. Public Health and Screening Services-Local Provider Flows
  24. Primary Care Services-Local Provider Flows
  25. Population Data-Local Provider Flows
  26. Other Not Elsewhere Classified (NEC)-Local Provider Flows
  27. Mental Health-Local Provider Flows
  28. Maternity Services Data Set
  29. Experience, Quality and Outcomes-Local Provider Flows
  30. Emergency Care-Local Provider Flows
  31. Diagnostic Services-Local Provider Flows
  32. Diagnostic Imaging Dataset
  33. Demand for Service-Local Provider Flows
  34. Community-Local Provider Flows
  35. Children and Young People Health
  36. Ambulance-Local Provider Flows
  37. Acute-Local Provider Flows
  38. SUS (Accident & Emergency, Inpatient and Outpatient data)
  39. Local Provider Data - Acute, Ambulance, Community, Demand for Service, Diagnostic Services, Emergency Care, Experience Quality and Outcomes, Mental Health, Other not elsewhere classified, Population Data, Primary Care

Objectives:

Risk Stratification
To use SUS data identifiable at the level of NHS number according to S.251 CAG 7-04(a) (and Primary Care Data) for the purpose of Risk Stratification. Risk Stratification provides a forecast of future demand by identifying high risk patients. This enables commissioners to initiate proactive management plans for patients that are potentially high service users. Risk Stratification enables GPs to better target intervention in Primary Care

Pseudonymised – SUS and Local Flows
To use pseudonymised data to provide intelligence to support commissioning of health services. The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets.
The CCGs commission services from a range of providers covering a wide array of services. Each of the data flow categories requested supports the commissioned activity of one or more providers.

Pseudonymised – Mental Health, Maternity, IAPT, CYPHS and DIDS
To use pseudonymised data for the following datasets to provide intelligence to support commissioning of health services :
- Mental Health Minimum Data Set (MHMDS)
- Mental Health Learning Disability Data Set (MHLDDS)
- Mental Health Services Data Set (MHSDS)
- Maternity Services Data Set (MSDS)
- Improving Access to Psychological Therapy (IAPT)
- Child and Young People Health Service (CYPHS)
- Diagnostic Imaging Data Set (DIDS)
The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets.


No record level data will be linked other than as specifically detailed within this application/agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from the HSCIC will not be national data, but only that data relating to the specific locality of interest of the applicant.

Expected Benefits:

Risk Stratification
Risk stratification promotes improved case management in primary care and will lead to the following benefits being realised:
1. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these.
2. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services and early intervention of appropriate care.
3. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required.
4. Potentially reduced premature mortality by more targeted intervention in primary care, which supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework.
5. Better understanding of the health of and the variations in health outcomes within the population to help understand local population characteristics.
All of the above lead to improved patient experience through more effective commissioning of services.

Pseudonymised – SUS and Local Flows
1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, integrated care and pathways.
a. Analysis to support full business cases.
b. Develop business models.
c. Monitor In year projects.
2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types.
3. Health economic modelling using:
a. Analysis on provider performance against 18 weeks wait targets.
b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients.
c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway.
d. Analysis to understand emergency care and linking A&E and Emergency Urgent Care Flows (EUCC).
4. Commissioning cycle support for grouping and re-costing previous activity.
5. Enables monitoring of:
a. CCG outcome indicators.
b. Non-financial validation of activity.
c. Successful delivery of integrated care within the CCG.
d. Checking frequent or multiple attendances to improve early intervention and avoid admissions.
e. Case management.
f. Care service planning.
g. Commissioning and performance management.
h. List size verification by GP practices.
i. Understanding the care of patients in nursing homes.
6. Feedback to NHS service providers on data quality at an aggregate and individual record level – only on data initially provided by the service providers.

Pseudonymised – Mental Health, Maternity, IAPT, CYPHS and DIDS
1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, Integrated care and pathways.
a. Analysis to support full business cases.
b. Develop business models.
c. Monitor In year projects.
2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types.
3. Health economic modelling using:
a. Analysis on provider performance against 18 weeks wait targets.
b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients.
c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway.
d. Analysis to understand emergency care and linking A&E and Emergency Urgent Care Flows (EUCC).
4. Commissioning cycle support for grouping and re-costing previous activity.
5. Enables monitoring of:
a. CCG outcome indicators.
b. Non-financial validation of activity.
c. Successful delivery of integrated care within the CCG.
d. Checking frequent or multiple attendances to improve early intervention and avoid admissions.
e. Case management.
f. Care service planning.
g. Commissioning and performance management.
h. List size verification by GP practices.
i. Understanding the care of patients in nursing homes.
6. Feedback to NHS service providers on data quality at an aggregate and individual record level – only on data initially provided by the service providers.

Outputs:

Risk Stratification
1. 1) As part of the risk stratification processing activity detailed above, GPs have access to the risk stratification tool which highlights patients for whom the GP is responsible and have been classed as at risk. The risk stratification presents pseudonymised data to the GPs. GPs are able to re-identify information only for their own patients for the purpose of direct care.
2. Output from the risk stratification tool will provide aggregate reporting of number and percentage of population found to be at risk.
3. Record level output will be available for commissioners pseudonymised at patient level and aggregated reports.
Pseudonymised – SUS and Local Flows
1. Commissioner reporting:
a. Summary by provider view - plan & actuals year to date (YTD).
b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD.
c. Summary by provider view - activity & finance variance by POD.
d. Planned care by provider view - activity & finance plan & actuals YTD.
e. Planned care by POD view - activity plan & actuals YTD.
f. Provider reporting.
g. Statutory returns.
h. Statutory returns - monthly activity return.
i. Statutory returns - quarterly activity return.
j. Delayed discharges.
k. Quality & performance referral to treatment reporting.
2. Readmissions analysis.
3. Production of aggregate reports for CCG Business Intelligence.
4. Production of project / programme level dashboards.
5. Monitoring of acute / community / mental health quality matrix.
6. Clinical coding reviews / audits.
7. Budget reporting down to individual GP Practice level.
8. GP Practice level dashboard reports include high flyers.

Pseudonymised – Mental Health, Maternity, IAPT, CYPHS and DIDS
1. Commissioner reporting:
a. Summary by provider view - plan & actuals year to date (YTD).
b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD.
c. Summary by provider view - activity & finance variance by POD.
d. Planned care by provider view - activity & finance plan & actuals YTD.
e. Planned care by POD view - activity plan & actuals YTD.
f. Provider reporting.
g. Statutory returns.
h. Statutory returns - monthly activity return.
i. Statutory returns - quarterly activity return.
j. Delayed discharges.
k. Quality & performance referral to treatment reporting.
2. Readmissions analysis.
3. Production of aggregate reports for CCG Business Intelligence.
4. Production of project / programme level dashboards.
5. Monitoring of mental health quality matrix.
6. Clinical coding reviews / audits.
7. Budget reporting down to individual GP Practice level.
8. GP Practice level dashboard reports include high flyers.

Processing:

Prior to the release of identifiable data by North West DSCRO, Type 2 objections will be applied and the relevant patient’s data redacted.

Risk Stratification
1. SUS Data is sent from the SUS Repository to North West Data Services for Commissioners Regional Office (DSCRO) to the data processor.
2. SUS data identifiable at the level of NHS number regarding hospital admissions, A&E attendances and outpatient attendances is delivered securely from North West DSCRO to the data processor.
3. Data quality management and standardisation of data is completed by North West DSCRO and the data identifiable at the level of NHS number is transferred securely to Arden & GEM CSU, who hold the SUS data within the secure Data Centre on N3.
4. Identifiable GP Data is securely sent from the GP system to Arden & GEM CSU.
5. SUS data is linked to GP data in the risk stratification tool by the data processor.
6. Arden & GEM CSU who hosts the risk stratification system that holds SUS data is limited to those administrative staff with authorised user accounts used for identification and authentication.
7. Once Arden & GEM CSU has completed the processing, the data is passed to the CCG in pseudonymised form at patient level and as aggregated reports.

Pseudonymised – SUS and Local Flows
Data Processor 2 – GMSS (via DP1):
1. North West Data Services for Commissioners Regional Office (DSCRO) receives a flow of SUS identifiable data for the CCG from the SUS Repository. North West DSCRO also receives identifiable local provider data for the CCG directly from Providers.
2. Data quality management and pseudonymisation of data is completed by North West DSCRO and the pseudonymised data is then passed securely to Arden & GEM CSU for the addition of derived fields, linkage of data sets and analysis.
3. Arden & GEM CSU then passes the pseudonymised data securely to the Greater Manchester Shared Services (GMSS).
4. GMSS analyse the data to see patient journeys for pathway or service design, re-design and de-commissioning.
5. GMSS then pass the processed pseudonymised data to the CCG
6. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression in line with the HES analysis guide.
Data Processor 4 – AQuA (via DP1):
1. North West Data Services for Commissioners Regional Office (DSCRO) receives a flow of SUS identifiable data for the CCG from the SUS Repository. North West DSCRO also receives identifiable local provider data for the CCG directly from Providers.
2. Data quality management and pseudonymisation of data is completed by North West DSCRO and the pseudonymised data is then passed securely to Arden & GEM CSU for the addition of derived fields, linkage of data sets and analysis.
3. Arden & GEM CSU then passes the pseudonymised data securely to AQuA to provide support for a range of quality improvement programmes including the NW Advancing Quality Programme. AQuA identifies cohorts of patients within specific disease groups for further analysis to help drive quality improvements across the region.
4. AQuA produces aggregate reports only with small number suppression in line with the HES analysis guide. Only aggregate reports are sent to the CCG.

Data Processor 5 – Academic Health Sciences Network (Utilisation Management Team) (SUS Only) (via DP1)::
1. North West Data Services for Commissioners Regional Office (DSCRO) receives a flow of SUS identifiable data for the CCG from the SUS Repository.
2. Data quality management and pseudonymisation of data is completed by North West DSCRO and the pseudonymised data is then passed securely to Arden & GEM CSU for the addition of derived fields, linkage of data and analysis.
3. Arden & GEM CSU then passes the pseudonymised data securely to the Academic Health Service (Utilisation Management Team) (AHSN UMT)
4. The AHSN UMT receive pseudonymised SUS data for Greater Manchester patients. They analyse the data to look at processes rather than patients, for example, A&E performance, process times, bed days as well as ‘deep dives’ to support clinical reviews for CCGs.
5. AHSN UMT produces aggregate reports only with small number suppression in line with the HES analysis guide. Only aggregate reports are sent to the CCG.
NHS Bury CCG, NHS Heywood, Middleton and Rochdale CCG, NHS North Manchester CCG and NHS Oldham CCG have a collaborative information sharing agreement in place to share pseudonymised SLAM and SLAM Backup data between these CCGs only. SLAM data is included under Local Flows and is available under the Health and Social Care Act 2012.
Pseudonymised – Mental Health and IAPT
Data Processor 1 – Arden & GEM CSU
1. North West Data Services for Commissioners Regional Office (DSCRO) receives a flow of data identifiable at the level of NHS number for Mental Health (MHSDS, MHMDS, MHLDDS) and MSDS. North West DSCRO also receive a flow of pseudonymised patient level data for each CCG for Improving Access to Psychological Therapies (IAPT), Child and Young People’s Health (CYPHS) and Diagnostic Imaging (DIDS) for commissioning purposes
1. Data quality management and pseudonymisation of data is completed by North West DSCRO and the pseudonymised data is then passed securely to Arden & GEM CSU for the addition of derived fields, linkage of data sets and analysis.
2. Arden & GEM CSU then pass the processed, pseudonymised and linked data to the CCG who analyse the data to see patient journeys for pathways or service design, re-design and de-commissioning.
3. The CCG analyses the data to see patient journeys for pathway or service design, re-design and de-commissioning
4. Aggregation of required data for CCG management use can be completed by the CSU or the CCG
5. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression in line with the HES analysis guide.
Data Processor 2 – GMSS (via DP1):
Greater Manchester Shared Services (GMSS) have taken BI services in house and are now hosted by Oldham CCG. AGEM CSU flow data to a small team within GMSS. Access to the data is restricted to this team who access and manage the data. These BI services were previously provided by North West CSU.

GMSS deliver a range of services including;
• effective use of resources;
• data quality;
• information governance;
• market management;
• provider contract & performance management;

To enable GMSS to support these services a team within the GMSS have controlled access to SUS data at a pseudonymised level. Access to the data is controlled by AGEM CSU using users’ roles to ensure only appropriate users gain access to pseudonymised data. Data can then be used for reporting to support the range of services being offered to CCGs, and CCGs receive aggregate level reports from GMSS. GMSS staff are separate from Oldham CCG staff and accordingly have separate functions and roles.
1. North West Data Services for Commissioners Regional Office (DSCRO) receives a flow of data identifiable at the level of NHS number for Mental Health (MHSDS, MHMDS, MHLDDS) North West DSCRO also receive a flow of pseudonymised patient level data for each CCG for Improving Access to Psychological Therapies (IAPT) for commissioning purposes
2. The pseudonymised data is securely transferred from North West DSCRO to Arden & GEM CSU for the addition of derived fields, linkage of data sets and analysis.
3. Arden & GEM CSU then pass the processed, pseudonymised and linked data to the Greater Manchester Shared Services (GMSS)
4. GMSS analyse and conduct the BI function and then send the Pseudonymised data to the CCG.
5. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression.
Data Processor 4 - Advancing Quality Alliance (AQuA) (via DP1):
1. North West Data Services for Commissioners Regional Office (DSCRO) receives a flow of data identifiable at the level of NHS number for Mental Health (MHSDS, MHMDS, MHLDDS).
2. Data quality management and pseudonymisation of data is completed by North West DSCRO and the pseudonymised data is then passed securely to Arden & GEM CSU for the addition of derived fields, linkage of data sets and analysis.
3. Arden & GEM CSU then passes the pseudonymised data securely to Advancing Quality Alliance (AQuA).
4. AQuA receives pseudonymised SUS data for Greater Manchester patients. They analyse the data to look at processes rather than patients, for example, A&E performance, process times, bed days as well as ‘deep dives’ to support clinical reviews for CCGs.
5. AQuA produces aggregate reports only with small number suppression in line with the HES analysis guide. Only aggregate reports are sent to the CCG.