NHS Digital Data Release Register - reformatted

NHS Southwark Ccg projects

290 data files in total were disseminated unsafely (information about files used safely is missing for TRE/"system access" projects).


🚩 NHS Southwark Ccg was sent multiple files from the same dataset, in the same month, both with optouts respected and with optouts ignored. NHS Southwark Ccg may not have compared the two files, but the identifiers are consistent between datasets, and outside of a good TRE NHS Digital can not know what recipients actually do.

Project 1 — DARS-NIC-43513-G0K8W

Type of data: information not disclosed for TRE projects

Opt outs honoured: No - data flow is not identifiable, Yes - patient objections upheld (Section 251, Section 251 NHS Act 2006)

Legal basis: Health and Social Care Act 2012 – s261(1) and s261(2)(b)(ii), Health and Social Care Act 2012 – s261(7)

Purposes: ()

Sensitive: Sensitive

When:2018.06 — 2019.06.

Access method: Frequent adhoc flow, Frequent Adhoc Flow

Data-controller type:

Sublicensing allowed:

Datasets:

  1. Acute-Local Provider Flows
  2. Ambulance-Local Provider Flows
  3. Children and Young People Health
  4. Community Services Data Set
  5. Community-Local Provider Flows
  6. Demand for Service-Local Provider Flows
  7. Diagnostic Imaging Dataset
  8. Diagnostic Services-Local Provider Flows
  9. Emergency Care-Local Provider Flows
  10. Experience, Quality and Outcomes-Local Provider Flows
  11. Improving Access to Psychological Therapies Data Set
  12. Maternity Services Data Set
  13. Mental Health and Learning Disabilities Data Set
  14. Mental Health Minimum Data Set
  15. Mental Health Services Data Set
  16. Mental Health-Local Provider Flows
  17. National Cancer Waiting Times Monitoring DataSet (CWT)
  18. Other Not Elsewhere Classified (NEC)-Local Provider Flows
  19. Population Data-Local Provider Flows
  20. Primary Care Services-Local Provider Flows
  21. Public Health and Screening Services-Local Provider Flows
  22. SUS for Commissioners

Objectives:

Risk Stratification
Risk stratification is a tool for identifying and predicting which patients are at high risk or are likely to be at high risk and prioritising the management of their care in order to prevent worse outcomes.
To conduct risk stratification Secondary User Services (SUS+) data, identifiable at the level of NHS number is linked with Primary Care data (from GPs) and an algorithm is applied to produce risk scores. Risk Stratification provides focus for future demands by enabling commissioners to prepare plans for patients. Commissioners can then prepare plans for patients who may require high levels of care. Risk Stratification also enables General Practitioners (GPs) to better target intervention in Primary Care.

Risk Stratification will be conducted by North & East London Commissioning Support Unit


Commissioning
To use pseudonymised data to provide intelligence to support the commissioning of health services. The data (containing both clinical and financial information) is analysed so that health care provision can be planned to support the needs of the population within the CCG area.
The CCGs commission services from a range of providers covering a wide array of services. Each of the data flow categories requested supports the commissioned activity of one or more providers.
The following pseudonymised datasets are required to provide intelligence to support commissioning of health services:
- Secondary Uses Service (SUS+)
- Local Provider Flows
o Acute
o Ambulance
o Community
o Demand for Service
o Diagnostic Service
o Emergency Care
o Experience, Quality and Outcomes
o Mental Health
o Other Not Elsewhere Classified
o Population Data
o Primary Care Services
o Public Health Screening
- Mental Health Minimum Data Set (MHMDS)
- Mental Health Learning Disability Data Set (MHLDDS)
- Mental Health Services Data Set (MHSDS)
- Maternity Services Data Set (MSDS)
- Improving Access to Psychological Therapy (IAPT)
- Child and Young People Health Service (CYPHS)
- Diagnostic Imaging Data Set (DIDS)
- Community Services Data Set (CSDS)
- National Cancer Waiting Times (NCWT)
The pseudonymised data is required to for the following purposes:
§ Population health management:
• Understanding the interdependency of care services
• Targeting care more effectively
• Using value as the redesign principle
§ Data Quality and Validation – allowing data quality checks on the submitted data
§ Thoroughly investigating the needs of the population, to ensure the right services are available for individuals when and where they need them
§ Understanding cohorts of residents who are at risk of becoming users of some of the more expensive services, to better understand and manage those needs
§ Monitoring population health and care interactions to understand where people may slip through the net, or where the provision of care may be being duplicated
§ Modelling activity across all data sets to understand how services interact with each other, and to understand how changes in one service may affect flows through another
§ Service redesign
§ Health Needs Assessment – identification of underlying disease prevalence within the local population
§ Patient stratification and predictive modelling - to identify specific patients at risk of requiring hospital admission and other avoidable factors such as risk of falls, computed using algorithms executed against linked de-identified data, and identification of future service delivery models

The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets.

Processing for commissioning will be conducted by North & East London Commissioning Support Unit

Expected Benefits:

Risk Stratification
Risk stratification promotes improved case management in primary care and will lead to the following benefits being realised:
1. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these.
2. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services thus allowing early intervention.
3. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required.
4. Supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework by allowing for more targeted intervention in primary care.
5. Better understanding of local population characteristics through analysis of their health and healthcare outcomes
All of the above lead to improved patient experience through more effective commissioning of services.



Commissioning
1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, integrated care and pathways.
a. Analysis to support full business cases.
b. Develop business models.
c. Monitor In year projects.
2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types.
3. Health economic modelling using:
a. Analysis on provider performance against 18 weeks wait targets.
b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients.
c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway.
d. Analysis to understand emergency care and linking A&E and Emergency Urgent Care Flows (EUCC).
4. Commissioning cycle support for grouping and re-costing previous activity.
5. Enables monitoring of:
a. CCG outcome indicators.
b. Financial and Non-financial validation of activity.
c. Successful delivery of integrated care within the CCG.
d. Checking frequent or multiple attendances to improve early intervention and avoid admissions.
e. Case management.
f. Care service planning.
g. Commissioning and performance management.
h. List size verification by GP practices.
i. Understanding the care of patients in nursing homes.
6. Feedback to NHS service providers on data quality at an aggregate and individual record level – only on data initially provided by the service providers.
7. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these.
8. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services and early intervention of appropriate care.
9. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required.
10. Potentially reduced premature mortality by more targeted intervention in primary care, which supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework.
11. Better understanding of the health of and the variations in health outcomes within the population to help understand local population characteristics.
12. Better understanding of contract requirements, contract execution, and required services for management of existing contracts, and to assist with identification and planning of future contracts
13. Insights into patient outcomes, and identification of the possible efficacy of outcomes-based contracting opportunities.

Outputs:

Risk Stratification
1. As part of the risk stratification processing activity detailed above, GPs have access to the risk stratification tool which highlights patients for whom the GP is responsible and have been classed as at risk. The only identifier available to GPs is the NHS numbers of their own patients. Any further identification of the patients will be completed by the GP on their own systems.
2. Output from the risk stratification tool will provide aggregate reporting of number and percentage of population found to be at risk.
3. Record level output will be available for commissioners (of the CCG), pseudonymised at patient level.
4. GP Practices will be able to view the risk scores for individual patients with the ability to display the underlying SUS+ data for the individual patients when it is required for direct care purposes by someone who has a legitimate relationship with the patient.
5. The CCG will be able to target specific patient groups and enable clinicians with the duty of care for the patient to offer appropriate interventions. The CCG will also be able to:
o Stratify populations based on: disease profiles; conditions currently being treated; current service use; pharmacy use and risk of future overall cost
o Plan work for commissioning services and contracts
o Set up capitated budgets
o Identify health determinants of risk of admission to hospital, or other adverse care outcomes.

Commissioning
1. Commissioner reporting:
a. Summary by provider view - plan & actuals year to date (YTD).
b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD.
c. Summary by provider view - activity & finance variance by POD.
d. Planned care by provider view - activity & finance plan & actuals YTD.
e. Planned care by POD view - activity plan & actuals YTD.
f. Provider reporting.
g. Statutory returns.
h. Statutory returns - monthly activity return.
i. Statutory returns - quarterly activity return.
j. Delayed discharges.
k. Quality & performance referral to treatment reporting.
2. Readmissions analysis.
3. Production of aggregate reports for CCG Business Intelligence.
4. Production of project / programme level dashboards.
5. Monitoring of acute / community / mental health quality matrix.
6. Clinical coding reviews / audits.
7. Budget reporting down to individual GP Practice level.
8. GP Practice level dashboard reports include high flyers.
9. Comparators of CCG performance with similar CCGs as set out by a specific range of care quality and performance measures detailed activity and cost reports
10. Data Quality and Validation measures allowing data quality checks on the submitted data
11. Contract Management and Modelling
12. Patient Stratification, such as:
o Patients at highest risk of admission
o Most expensive patients (top 15%)
o Frail and elderly
o Patients that are currently in hospital
o Patients with most referrals to secondary care
o Patients with most emergency activity
o Patients with most expensive prescriptions
o Patients recently moving from one care setting to another
i. Discharged from hospital
ii. Discharged from community

Processing:

Data must only be used as stipulated within this Data Sharing Agreement.

Data Processors must only act upon specific instructions from the Data Controller.

Data can only be stored at the addresses listed under storage addresses.

Patient level data will not be shared outside of the CCG unless it is for the purpose of Direct Care, where it may be shared only with those health professionals who have a legitimate relationship with the patient and a legitimate reason to access the data.

All access to data is managed under Roles-Based Access Controls

No patient level data will be linked other than as specifically detailed within this agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality and that data required by the applicant.

NHS Digital reminds all organisations party to this agreement of the need to comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data)

The DSCRO (part of NHS Digital) will apply Type 2 objections before any identifiable data leaves the DSCRO.

CCGs should work with general practices within their CCG to help them fulfil data controller responsibilities regarding flow of identifiable data into risk stratification tools.

Segregation
Where the Data Processor and/or the Data Controller hold both identifiable and pseudonymised data, the data will be held separately so data cannot be linked.

All access to data is auditable by NHS Digital.

Data for the purpose of Invoice Validation is kept within the CEfF, and only used by staff properly trained and authorised for the activity. Only CEfF staff are able to access data in the CEfF and only CEfF staff operate the invoice validation process within the CEfF. Data flows directly in to the CEfF from the DSCRO and from the providers – it does not flow through any other processors.


Risk Stratification
1. Identifiable SUS+ data is obtained from the SUS Repository to the Data Services for Commissioners Regional Office (DSCRO).
2. Data quality management and standardisation of data is completed by the DSCRO and the data identifiable at the level of NHS number is transferred securely to North & East London Commissioning Support Unit, who hold the SUS+ data within the secure Data Centre on N3.
3. Identifiable GP Data is securely sent from the GP system to North & East London Commissioning Support Unit.
4. SUS+ data is linked to GP data in the risk stratification tool by the data processor.
5. As part of the risk stratification processing activity, GPs have access to the risk stratification tool within the data processor, which highlights patients with whom the GP has a legitimate relationship and have been classed as at risk. The only identifier available to GPs is the NHS numbers of their own patients. Any further identification of the patients will be completed by the GP on their own systems.
6. Once North & East London Commissioning Support Unit has completed the processing, the CCG can access the online system via a secure connection to access the data pseudonymised at patient level.


Commissioning
The Data Services for Commissioners Regional Office (DSCRO) obtains the following data sets:
1. SUS+
2. Local Provider Flows (received directly from providers)
a. Acute
b. Ambulance
c. Community
d. Demand for Service
e. Diagnostic Service
f. Emergency Care
g. Experience, Quality and Outcomes
h. Mental Health
i. Other Not Elsewhere Classified
j. Population Data
k. Primary Care Services
l. Public Health Screening
3. Mental Health Minimum Data Set (MHMDS)
4. Mental Health Learning Disability Data Set (MHLDDS)
5. Mental Health Services Data Set (MHSDS)
6. Maternity Services Data Set (MSDS)
7. Improving Access to Psychological Therapy (IAPT)
8. Child and Young People Health Service (CYPHS)
9. Diagnostic Imaging Data Set (DIDS)
10 . Community Services Data Set (CSDS)
11. National Cancer Waiting Times (NCWT)
Data quality management and pseudonymisation is completed within the DSCRO and is then disseminated as follows:
Data Processor 1 – North & East London Commissioning Support Unit

Pseudonymised SUS+, Local Provider data, Mental Health data (MHSDS, MHMDS, MHLDDS), Maternity data (MSDS), Improving Access to Psychological Therapies data (IAPT), Child and Young People’s Health data (CYPHS), and Diagnostic Imaging data (DIDS) Community Services Data Set (CSDS) and National Cancer Waiting Times (NCWT) only is securely transferred from the DSCRO to North & East London Commissioning Support Unit
1. North & East London Commissioning Support Unit add derived fields, link data and provide analysis to:
a. See patient journeys for pathways or service design, re-design and de-commissioning.
b. Check recorded activity against contracts or invoices and facilitate discussions with providers.
c. Undertake population health management
d. Undertake data quality and validation checks
e. Thoroughly investigate the needs of the population
f. Understand cohorts of residents who are at risk
g. Conduct Health Needs Assessments
2. Allowed linkage is between the data sets contained within point 1.
3. North & East London Commissioning Support Unit
4. then pass the processed, pseudonymised and linked data to the CCG.
5. Aggregation of required data for CCG management use will be completed by North & East London Commissioning Support Unit or the CCG as instructed by the CCG.
6. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared as set out within NHS Digital guidance applicable to each data set.


Project 2 — NIC-43513-G0K8W

Type of data: information not disclosed for TRE projects

Opt outs honoured: N, Y

Legal basis: Health and Social Care Act 2012, Section 251 approval is in place for the flow of identifiable data

Purposes: ()

Sensitive: Sensitive

When:2017.06 — 2017.05.

Access method: Ongoing

Data-controller type:

Sublicensing allowed:

Datasets:

  1. Children and Young People's Health Services Data Set
  2. Improving Access to Psychological Therapies Data Set
  3. Local Provider Data - Acute
  4. Local Provider Data - Ambulance
  5. Local Provider Data - Community
  6. Local Provider Data - Demand for Service
  7. Local Provider Data - Diagnostic Services
  8. Local Provider Data - Emergency Care
  9. Local Provider Data - Experience Quality and Outcomes
  10. Local Provider Data - Public Health & Screening services
  11. Local Provider Data - Mental Health
  12. Local Provider Data - Population Data
  13. Local Provider Data - Primary Care
  14. Mental Health and Learning Disabilities Data Set
  15. Mental Health Minimum Data Set
  16. Mental Health Services Data Set
  17. SUS Accident & Emergency data
  18. SUS Admitted Patient Care data
  19. SUS Outpatient data
  20. Local Provider Data - Other not elsewhere classified
  21. Maternity Services Dataset
  22. SUS data (Accident & Emergency, Admitted Patient Care & Outpatient)
  23. SUS for Commissioners
  24. Public Health and Screening Services-Local Provider Flows
  25. Primary Care Services-Local Provider Flows
  26. Population Data-Local Provider Flows
  27. Other Not Elsewhere Classified (NEC)-Local Provider Flows
  28. Mental Health-Local Provider Flows
  29. Maternity Services Data Set
  30. Experience, Quality and Outcomes-Local Provider Flows
  31. Emergency Care-Local Provider Flows
  32. Diagnostic Services-Local Provider Flows
  33. Diagnostic Imaging Dataset
  34. Demand for Service-Local Provider Flows
  35. Community-Local Provider Flows
  36. Children and Young People Health
  37. Ambulance-Local Provider Flows
  38. Acute-Local Provider Flows
  39. SUS (Accident & Emergency, Inpatient and Outpatient data)
  40. Local Provider Data - Acute, Ambulance, Community, Demand for Service, Diagnostic Services, Emergency Care, Experience Quality and Outcomes, Mental Health, Population Data, Primary Care, Public Health & Screening services

Objectives:

Risk Stratification
This is an application to use SUS data identifiable at the level of NHS number for the purpose of Risk Stratification. Risk Stratification provides a forecast of future demand by identifying high risk patients. This enables commissioners to initiate proactive management plans for patients that are potentially high service users.

Pseudonymised – SUS and Local Flows
Application for the CCG to use pseudonymised data to provide intelligence to support commissioning of health services. The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets.

Pseudonymised – Mental Health, Maternity, IAPT, CYPHS and DIDS
Application for the CCG to use MHSDS, MHMDS, MHLDDS, MSDS, IAPT, CYPHS and DIDs pseudonymised data to provide intelligence to support commissioning of health services. The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets.

No record level data will be linked other than as specifically detailed within this application/agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from NHS Digital will not be national data, but only that data relating to the specific locality of interest of the applicant.

Expected Benefits:

Risk Stratification
Risk stratification promotes improved case management in primary care and will lead to the following benefits being realised:
1. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these.
2. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services and early intervention of appropriate care.
3. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required.
4. Potentially reduced premature mortality by more targeted intervention in primary care, which supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework.
5. Better understanding of the health of and the variations in health outcomes within the population to help understand local population characteristics.
All of the above lead to improved patient experience through more effective commissioning of services.

Pseudonymised – SUS and Local Flows
1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, integrated care and pathways.
a. Analysis to support full business cases.
b. Develop business models.
c. Monitor In year projects.
2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types.
3. Health economic modelling using:
a. Analysis on provider performance against 18 weeks wait targets.
b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients.
c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway.
d. Analysis to understand emergency care and linking A&E and Emergency Urgent Care Flows (EUCC).
4. Commissioning cycle support for grouping and re-costing previous activity.
5. Enables monitoring of:
a. CCG outcome indicators.
b. Non-financial validation of activity.
c. Successful delivery of integrated care within the CCG.
d. Checking frequent or multiple attendances to improve early intervention and avoid admissions.
e. Case management.
f. Care service planning.
g. Commissioning and performance management.
h. List size verification by GP practices.
i. Understanding the care of patients in nursing homes.
6. Feedback to NHS service providers on data quality at an aggregate and individual record level – only on data initially provided by the service providers.

Pseudonymised – Mental Health, Maternity, IAPT, CYPHS and DIDS
1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, Integrated care and pathways.
a. Analysis to support full business cases.
b. Develop business models.
c. Monitor In year projects.
2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types.
3. Health economic modelling using:
a. Analysis on provider performance against targets.
b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients.
c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway.
4. Commissioning cycle support for grouping and re-costing previous activity.
5. Enables monitoring of:
a. CCG outcome indicators.
b. Non-financial validation of activity.
c. Successful delivery of integrated care within the CCG.
d. Checking frequent or multiple attendances to improve early intervention and avoid admissions.
e. Case management.
f. Care service planning.
g. Commissioning and performance management.
h. List size verification by GP practices.
i. Understanding the care of patients in nursing homes.
6. Feedback to NHS service providers on data quality at an aggregate and individual record level – only on data initially provided by the service providers.

Outputs:

Risk Stratification
1. As part of the risk stratification processing activity detailed above, GPs have access to the risk stratification tool which highlights patients for whom the GP is responsible and have been classed as at risk. The only identifier available to GPs is the NHS numbers of their own patients. Any further identification of the patients will be completed by the GP on their own systems.
2. Output from the risk stratification tool will provide aggregate reporting of number and percentage of population found to be at risk.
3. Record level output will be available for commissioners pseudonymised at patient level.
4. GP Practices will be able to view the risk scores for individual patients with the ability to display the underlying SUS data for the individual patients when it is required for direct care purposes by someone who has a legitimate relationship with the patient.

Pseudonymised – SUS and Local Flows
1. Commissioner reporting:
a. Summary by provider view - plan & actuals year to date (YTD).
b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD.
c. Summary by provider view - activity & finance variance by POD.
d. Planned care by provider view - activity & finance plan & actuals YTD.
e. Planned care by POD view - activity plan & actuals YTD.
f. Provider reporting.
g. Statutory returns.
h. Statutory returns - monthly activity return.
i. Statutory returns - quarterly activity return.
j. Delayed discharges.
k. Quality & performance referral to treatment reporting.
2. Readmissions analysis.
3. Production of aggregate reports for CCG Business Intelligence.
4. Production of project / programme level dashboards.
5. Monitoring of acute / community / mental health quality matrix.
6. Clinical coding reviews / audits.
7. Budget reporting down to individual GP Practice level.
8. GP Practice level dashboard reports include high flyers.

Pseudonymised – Mental Health, Maternity, IAPT, CYPHS and DIDS
1. Commissioner reporting:
a. Summary by provider view - plan & actuals year to date (YTD).
b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD.
c. Summary by provider view - activity & finance variance by POD.
d. Planned care by provider view - activity & finance plan & actuals YTD.
e. Planned care by POD view - activity plan & actuals YTD.
f. Provider reporting.
g. Statutory returns.
h. Statutory returns - monthly activity return.
i. Statutory returns - quarterly activity return.
j. Delayed discharges.
k. Quality & performance referral to treatment reporting.
2. Readmissions analysis.
3. Production of aggregate reports for CCG Business Intelligence.
4. Production of project / programme level dashboards.
5. Monitoring of mental health quality matrix.
6. Clinical coding reviews / audits.
7. Budget reporting down to individual GP Practice level.
8. GP Practice level dashboard reports include high flyers.

Processing:

South London DSCRO (part of NHS Digital) will apply Type 2 objections (from 14th October 2016 onwards) before any identifiable data leaves the DSCRO.

Risk Stratification
1. Identifiable SUS data is obtained from the SUS Repository to South London Data Services for Commissioners Regional Office (DSCRO).
2. Data quality management and standardisation of data is completed by South London DSCRO and the data identifiable at the level of NHS number is transferred securely to South East CSU, who hold the SUS data within the secure Data Centre on N3.
3. Identifiable GP Data is securely sent from the GP system to South East CSU.
4. SUS data is linked to GP data in the risk stratification tool by the data processor.
5. As part of the risk stratification processing activity, GPs have access to the risk stratification tool within the data processor, which highlights patients with whom the GP has a legitimate relationship and have been classed as at risk. The only identifier available to GPs is the NHS numbers of their own patients. Any further identification of the patients will be completed by the GP on their own systems.
6. South East CSU who hosts the risk stratification system that holds SUS data is limited to those administrative staff with authorised user accounts used for identification and authentication.
7. Once South East CSU has completed the processing, the CCG can access the online system via a secure N3 connection to access the data pseudonymised at patient level.

Pseudonymised – SUS and Local Flows
Data Processor 1 (South East CSU)
1. South London Data Services for Commissioners Regional Office (DSCRO) obtains a flow of SUS identifiable data for the CCG from the SUS Repository. South London DSCRO also obtains identifiable local provider data for the CCG directly from Providers.
2. Data quality management and pseudonymisation of data is completed by the DSCRO and the pseudonymised data is then passed securely to South East CSU for the addition of derived fields, linkage of data sets and analysis. Allowed linkage is between SUS data sets and local flows
3. South East CSU then pass the processed, pseudonymised and linked data to the CCG. The CCG analyse the data to see patient journeys for pathways or service design, re-design and de-commissioning.
4. Aggregation of required data for CCG management use will be completed by the CSU or the CCG as instructed by the CCG.
5. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression in line with the HES analysis guide can be shared where contractual arrangements are in place.

Data Processor 2 (South, Central and West CSU)
1. South Collaborative Data Services for Commissioners Regional Office (DSCRO) obtains a flow of SUS identifiable data for the CCG from the SUS Repository. South Collaborative DSCRO also obtains identifiable local provider data for the CCG directly from Providers.
2. Data quality management and pseudonymisation of data is completed by the DSCRO and the pseudonymised data is then passed securely to South Central and West CSU for the addition of derived fields, linkage of data sets and analysis. Allowed linkage is between SUS data sets and local flows
3. South Central and West CSU then pass the processed, pseudonymised and linked data to the CCG. The CCG analyse the data to see patient journeys for pathways or service design, re-design and de-commissioning.
4. Aggregation of required data for CCG management use will be completed by the CSU or the CCG as instructed by the CCG.
5. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression in line with the HES analysis guide can be shared where contractual arrangements are in place.

Pseudonymised – Mental Health, MSDS, IAPT, CYPHS and DIDS
Data Processor 1 (South East CSU)
1. South London Data Services for Commissioners Regional Office (DSCRO) obtains a flow of data identifiable at the level of NHS number for Mental Health (MHSDS, MHMDS, MHLDDS), Maternity (MSDS), Improving Access to Psychological Therapies (IAPT), Child and Young People’s Health (CYPHS) and Diagnostic Imaging (DIDS) for commissioning purposes.
2. Data quality management and pseudonymisation of data is completed by South London DSCRO and the pseudonymised data is then passed securely to South East CSU for the addition of derived fields and analysis.
3. South East CSU then pass the processed, pseudonymised data to the CCG.
4. The CCG analyses the data to see patient journeys for pathway or service design, re-design and de-commissioning
5. Aggregation of required data for CCG management use will be completed by the CSU or the CCG as instructed by the CCG
6. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared where contractual arrangements are in place.

Data Processor 2 (South, Central and West CSU)
1. South Collaborative Data Services for Commissioners Regional Office (DSCRO) obtains a flow of data identifiable at the level of NHS number for Mental Health (MHSDS, MHMDS, MHLDDS), Maternity (MSDS), Improving Access to Psychological Therapies (IAPT), Child and Young People’s Health (CYPHS) and Diagnostic Imaging (DIDS) for commissioning purposes.
2. Data quality management and pseudonymisation of data is completed by South London DSCRO and the pseudonymised data is then passed securely to South Central and West CSU for the addition of derived fields and analysis.
3. South Central and West CSU then pass the processed, pseudonymised data to the CCG.
4. The CCG analyses the data to see patient journeys for pathway or service design, re-design and de-commissioning
5. Aggregation of required data for CCG management use will be completed by the CSU or the CCG as instructed by the CCG
6. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared where contractual arrangements are in place.